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A computationally fast method for calculating the unsteady motion of 
a surface on a two-dimensional fluid is described. Cauchy’s integral 
theorem is used iteratively to solve Laplace’s equation for successive 
time derivatives of the surface motion and time-stepping is performed 
using truncated Taylor series. This allows fairly large time-steps to be 
made for a given accuracy while the required number of spatial points 
is minimised by using high order differencing formulae. This reduces 
the overall number of required calculations. The numerical implementa- 
tion of the method is found to be accurate and efficient. A fairly 
thorough examination of this implementation is carried out, revealing 
that high accuracies are often achievable using surprisingly few 
numerical surface points. Extensive calculations are also performed 
using modest computing resources. Some numerical instabilities are 
identified, although these would not usually be significant in practical 
calculations. A model analysis reveals that two of these instabilities can 
be eliminated by using suitable methods of time-stepping. Should the 
third “steep-wave instability” become significant, it is shown that it can 
be completely controlled by using high-order smoothing techniques, at 
little cost to accuracy. Using a routine to ensure asymptotic conserva- 
tion of energy, this is confirmed by time-stepping a very steep (but 
stable) wave over thousands of wave-periods. 0 1992 Academx Press. Inc. 

1. INTRODUCTION 

Since all of the interior properties of a body of fluid 
undergoing inviscid, incompressible irrotational motion are 
fully determined by properties at its boundary, it is possible 
to reduce the calculation of the motion of such a fluid to the 
evaluation of the motion of its surface alone. In a numerical 
scheme, the entire motion can thus be modelled using only 
a point discretisation of the surface. 

Such an approach was first suggested by Svendsen in 
1971 as a means of calculating the motion of two-dimen- 
sional gravity waves on water [ 13. Since then the idea has 
been implemented using a variety of boundary-integral or 
conformal mapping techniques, by Longuet-Higgins and 
Cokelet [2], Vinje and Brevig [3], Baker, Meiron, and 
Orszag [4], Roberts [S], Fornberg [6] and (based 
on his original formulation) by Svendsen and co-workers 
[7]. Although this paper presents yet another numerical 
method, the approach is aimed specifically at producing a 

computationally fast and efficient numerical scheme in 
order to be able to study problems of increased complexity. 

In numerically representing complicated surface motions, 
ranging from the breaking of waves to the evolution of 
instabilities in a train of travelling waves, it typically 
becomes necessary to use a large number of surface points. 
If running times tend to increase too rapidly with the 
number of points, then this can destroy any apparent 
advantage in being able to treat the whole fluid only in 
terms of its moving surface. The penalty is particularly 
severe for algorithms that require matrix inversion or 
factorisation techniques-yielding running times per time 
step that increase like N3 (the cube of the number of surface 
points). By using iterative techniques, the penalty can be 
reduced to running times per time-step that increase in 
proportion to N2. While being less severe, this still has the 
effect that increased numbers of surface points become 
increasingly expensive to calculate. The use of a conformal 
mapping technique [6] can lead to running times per time- 
step that vary like N log N. However, this method is 
severely limited in its ability to resolve steep wave surfaces 
(as are found in breaking waves), requiring dispropor- 
tionately many surface points to achieve a given accuracy. 

It is therefore vital to ensure computational elliciency if it 
is to be possible accurately to describe wave processes for 
which large numbers of surface points may be required. The 
most direct way of achieving this is to employ the lowest 
number of points that can adequately describe a fluid sur- 
face. In this paper, a further improvement is introduced by 
showing that higher time-derivatives of the motion can be 
calculated directly using exactly the same technique that is 
used to determine the velocity of the surface at each time- 
step. This yields significantly more information about the 
motion for relatively little extra computation. In turn, this 
allows larger time-steps to be performed for a given 
accuracy so that the overall number of calculations can be 
reduced. The method presented here combines these two 
ideas into producing a practical numerical algorithm, the 
properties of which are examined in the following pages. 

In Appendix A, the formulae are derived that make it 
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possible to calculate not only the velocity but also accelera- 
tion, the rate of change of acceleration and, in principle, any 
successive time derivative of the surface motion, given only 
the shape of and velocity potential on the surface at some 
instant in time. The usefulness of this extra information and 
its practical limitations are discussed. In fact these formulae 
can be used in conjunction with any one of the boundary 
integral or conformal mapping methods that are currently 
available for evaluating the gradient of a potential function 
at a surface from its values given along the surface. 

A brief outline is made of some of these methods for 
solving Laplace’s equation at a boundary. Of these we select 
the use of Cauchy’s integral theorem as potentially one of 
the simplest and most accurate to implement, one that has 
not previously been reported to lead to numerical insta- 
bilities in following the two-dimensional motion of a fluid 
surface, and one that can be solved efficiently by iteration. 
Using a “point-label” parameter and insisting that computa- 
tional points must be “smoothly” distributed along the 
surface, high order central differencing formulae are used to 
approximate the surface and to estimate the values of spatial 
derivatives. With these formulae, fewer points can be used 
to maintain a given accuracy than would be possible using 
lower-order differencing formulae or (say) linear surface 
elements-as in [3]. The numerical implementation 
(including the accommodation of the singularity of the 
integral kernels) is straightforward. 

In order to put these ideas to the test, a program was 
written for following the evolution of periodic wave sur- 
faces. In this, tenth order (1 l-point) polynomial estimates 
are used to solve the surface boundary value problem-in the 
form of Cauchy’s integral theorem-for the first three time- 
derivatives of the surface motion. Using (say) 1, previously 
calculated values of the third time-derivative, polynomial- 
fitted backward differencing is used to enhance the accuracy 
of time-stepping in the form of a Taylor series truncated 
to the order of 1, + 3. The order of backward differencing 
that is used for this, I,, can be set to any value between two 
and live. Variable time-steps are chosen in order to set 
the estimated errors due to time-stepping, for quadratic 
backward differencing (f, = 2), to a specified value. 

A number of sample calculations are presented in order to 
illustrate the accuracy and computational speed of the algo- 
rithm, including its economical requirement on the number 
of surface points. Some specifically unsteady calculations 
are also presented in order to illustrate the scheme’s ability 
to cope with small and large scales of wave-breaking as 
well as very long-time (non-breaking) evolutions of an 
unsteady wave-surface. These are performed accurately and 
remarkably quickly, requiring relatively few numerical 
points to describe the surface. As far as they go, these 
simulations also display no obvious signs of numerical 
instability and no deliberate steps were taken to prevent any 
such an instability. On a useful practical level, unsteady 

nonlinear processes such as the formation of fairly sharp 
wave crests and fluid jets in (for example) breaking waves or 
wave impacts, or the interactions of longer and shorter 
waves, are reproduced well by the numerical scheme. 

A problem of great interest, that has been reported to 
arise with most of the existing numerical schemes for 
following the motion of surface gravity waves, is the 
presence of a “sawtooth” numerical instability. This was 
first encountered by Longuet-Higgins and Cokelet [2], 
who used smoothing techniques to control it. An oscillation 
of successive points along the surface is found to grow from 
one time step to the next. It has been conjectured 
(Moore [S]) that the instability arises through an artificial 
numerically induced resonance interaction between the 
actual wave motion being modelled and short waves whose 
wavelength is about twice the particle separation on the sur- 
face. Finite numerical schemes, which are necessarily based 
on discrete approximations of continuous functions, may be 
unable correctly to model the dispersion relation for such 
short wavelengths. If the frequency of the motion of this 
shortest resolvable wavelength is artificially as low as the 
frequency of the basic wave, then a numerically induced 
resonance becomes highly likely. 

The algorithm, as implemented in this paper, produces a 
numerical dispersion relation for small-amplitude waves in 
which frequency increases monotonically as wavelength 
decreases down to, and including, the wave described by 
only two surface points (a “sawtooth” wave). As a result, 
resonance is highly unlikely, and indeed the resolution and 
calculation of short wavelengths of about two or three 
grid points often seems to contribute significantly to the 
accuracy and efficiency of the scheme. 

However, despite appearing to be numerically stable 
under many circumstances, a number of examinations 
reveal that the algorithm is, in fact, subject to at least 
three distinct forms of possible numerical instability. When 
using excessively large time-steps, one encounters a strong 
instability that appears and grows dramatically in very few 
steps. This is not surprising since explicit time-stepping is 
used. A simple stability analysis for the time-stepping of a 
model periodic problem reveals the manner in which the 
size of time-step leads to this instability when increased 
above a certain threshold value. Results accord well with 
some calculated numerical growth and decay rates. This 
strong instability is easily eliminated by appropriately 
restricting the size of time-step. 

The model stability analysis also predicts a fairly rich pic- 
ture for the ranges of numerical stability or instability for 
different orders of backward differencing. In particular, it 
predicts another form of weak instability that will normally 
always be present (however small the time-step) when quad- 
ratic or cubic backward differencing is used, i.e., I, = 2 or 3. 
Selected calculations show that this instability tends to be 
most significant when calculating small amplitude waves 
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over hundreds of wave-periods. Again, this weak instability 
is easily eliminated by using quartic or quintic backward 
differencing-the model analysis indicates that quintic dif- 
ferencing produces a wider window of stability (as well as 
being asymptotically more accurate at small time-steps). 

A third form of numerical instability is beyond the scope 
of this simple model analysis to predict. Investigating a 
number of test-cases, a steep-waoe instability is revealed. In 
following steady surface waves, the rate of growth of this 
instability is found to correlate surprisingly well with 
properties found at the peak of the wave, most particularly 
with the curvature of the wave-surface at that point. As 
such, it is still encountered for small amplitude waves, albeit 
over a very much prolonged time-scale. It is conjectured 
that this steep-wave instability is (at least partly) due to 
major errors in numerically simulating the group velocity of 
very short wave-modes, having wavelengths of about two to 
three grid points. Although the use of spectral methods for 
calculating derivatives, rather than high-order finite dif- 
ferencing, should improve the description of these modes 
[S] and so (possibly) remove the instability, these are not 
examined in this paper. 

More worryingly, the test investigations indicate that the 
steep-wave instability is always found to appear (for any 
size of time-step or order of backward differencing) in 
calculations that are able to continue over a sufficiently long 
period. This would present a major difficulty in attempting 
to calculate the asymptotically long-time evolutions of wave 
surfaces if the instability could not be prevented. For- 
tunately, this can be done by using smoothing techniques. 
Although their use is less satisfactory than having a numeri- 
cally stable scheme, some useful variations of the smoothing 
formulae derived by Longuet-Higgins and Cokelet [2] are 
discussed in Appendices B and C. While succeeding in 
removing any very short wavelength components in the sur- 
face data, higher-order smoothing formulae are shown to be 
much more selective and so to cause less loss of accuracy. 
A number of useful formulae (for variable-step backward 
differencing, 11 -point polynomial-fitting and derivative 
calculation, as well as routines for ensuring asymptotic 
conservation of energy and mean-level), are also presented 
in Appendices B and C. 

The role of these numerical instabilities should not be 
exaggerated. By appropriately choosing the order of back- 
ward differencing, by suitably limiting the maximum size of 
time-step and, if necessary, using a degree of smoothing, the 
scheme seems to be free of all numerically induced instability. 
Rather, it is important to understand the manner in which 
instabilities may arise in order to know how they may be 
removed or avoided. It is then possible to have greater 
confidence in the overall accuracy of the numerical method 
and to be sure that any calculated surface motion reflects a 
real property of the mathematical model rather than some 
purely numerically induced phenomenon. 

Most importantly, the scheme that is described and 
analysed in this paper is able quickly to perform highly 
accurate numerical calculations of gravity-waves. Equiv- 
alently, this means that a wide range of increasingly com- 
plicated and interesting wave phenomena can be studied 
even with relatively modest computing resources [9-141. 

2. DESCRIPTION OF THE FLUID MOTION 

2.1. Basic Model 

For inviscid, irrotational, ’ and incompressible flow, a 
velocity potential +(r, t) exists and satisfies Laplace’s 
equation, 

v’q5 = 0. (2.1) 

If the fluid is contained by a fixed impermeable bottom 
or lower boundary a then the condition that no fluid 
penetrates this bottom requires that the normal gradient t+6, 
of 4 must be zero: 

d,(r, t) = 0 for rEg. (2.2) 

In most of this paper only a horizontal bottom at y = -h is 
considered, for which the bottom boundary condition 
becomes, 

4,(x, -h, t) = 0. (2.3) 

However, it is worth noting that this is not such a special 
case as it may appear since the methods applicable to a 
boundary at y = -h can be extended to any situation where 
the boundary 9 can be transformed into a flat horizontal 
boundary under a conformal mapping [ 141 (cf. Section 3). 

The upper boundary of the fluid region can be considered 
to consist of a time-dependent surface r = R(t, t), on which 
it is convenient to define the parametric variable 4 to 
represent a particle-following (Lagrangean) coordinate. Suf- 
ficient boundary conditions with which to solve Laplace’s 
equation for 4 anywhere within the fluid region are then 
provided by specifying the values of 4 on the surface-that 
is by defining q5(R([, t), t) = @(t, t). In particular, the nor- 
mal gradient 4,, of 4 at the surface can be found, at least in 
principle. Since the tangential gradient 4, (s denotes the 
arclength) is obtainable by direct differentiation of @ and R 
with respect to t as follows 

#,=@t;/lR,It (2.4) 

’ A straightforward extension of the method to a flow with uniform 
vorticity appears in Ref. [ 151. 
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the velocity of the fluid at the surface can be determined 
using 

u=Vfp=cj4,B+fp,ii (2.5) 

where B and n are tangential and normal unit vectors, 
respectively. 

It is possible to use this information for integrating 
forwards in time both the surface profile R(5, t) and the sur- 
face values of the potential @([, t); a kinematic condition, 
that fluid particles move with their own velocity, 

(2.6) 

and a “dynamic” condition for an inviscid fluid, given by 
Bernoulli’s equation, 

(2.7) 

provide the necessary information for doing this. In the 
latter equation, the fluid density is p and g represents the 
acceleration due to gravity in the direction of decreasing y. 

The way in which the pressure P is specified on the surface 
must depend on the nature of the particular situation being 
modelled. The simplest description is to define it as a 
constant (say zero) representing the case in which surface 
tension is negligible and where any upper fluid, such as 
the atmosphere, is considered light enough to cause no 
significant variation in hydrostatic or dynamic pressure. 
Surface tension can be included by defining P as 

P= PO--arc, (2.8) 

where P, is the pressure on the exterior side of the surface, 
c is the coefftcient of surface tension, and K is the curvature 
of the surface given by 

or 

* 
~0 = Rss = (R,/IR,I Je/lRt I 

(2.9) 
2 312 K= x, y,, - yJ,,w: + Yc) ( , 

where R = (X( 5, t), Y( r, t )). Appropriate choices of P (or 
PO) can be made to approximate the effects of wind over a 
wave surface, or to generate the motion of a “pressure- 
forced” wave [Z]. It is also possible to calculate P from the 
motion of another fluid above the surface [4]. 

Once the surface pressure P is obtainable at any time t, 
and the velocity u can be obtained by solving Laplace’s 
equation (2.1) with 4 specified on the surface, it becomes 
possible to integrate equations (2.6) and (2.7) with respect 

to time-at least on the surface. In principle, given their 
values at any initial moment, this provides a full description 
of the evolution of the surface profile R and surface potential 
@. By discretising time and the fluid surface, these formulae 
can be implemented numerically to provide a 
tional algorithm for following the development 
gravity-waves [l-7]. 

computa- 
of surface 

2.2. Use of Higher Time Derivatives 

It is useful to note that a procedure for solving Laplace’s 
equation (2.1) for the gradient 4,-given the bottom 
boundary condition (2.2) and the values of 4 on the 
surface-can also be used to obtain the gradient of any 
harmonic potential function in exactly the same way. In 
particular, by differentiating (2.5), (2.1), and (2.2), it is 
easily seen that successive Eulerian time derivatives of d, 
namely #,, d,,, etc., satisfy both Laplace’s equation and the 
same bottom boundary condition as 4. Moreover, these 
derivatives are the potential functions for the corresponding 
Eulerian time derivatives of velocity: 

u, = V#,, v’qd, = 0, (q4,),=0 for r~%3, 

u,, = v4,n V2d*, = 0, (#,,),=O for r~9#), 
(2.10) 

etc. 
In Appendix A, the detailed formulae are derived with 

which this property can be exploited to determine any num- 
ber of Lagrangean time-derivatives of the surface profile and 
potential. In essence, given R and 4 on the surface at a time 
t and a means of solving for Vq5, which thus gives the 
velocity u, the value of 4, on the surface can be found and 
used to obtain V$, in the same way. From this, the accelera- 
tion Du/Dt can be calculated as well as the surface values of 
c$,,. Similarly, by obtaining Vqi,, the next time-derivative can 
be calculated and, in principle, the procedure can be 
continued indefinitely. It is thus possible successively to 
determine up to any order of time derivative of the velocity 
from a knowledge only of the surface profile and velocity 
potential at the surface. Using these derivatives, the time- 
dependence of R and 4 can be expressed in terms of Taylor 
series expansions. 

However, in a numerical solution of the motion of a sur- 
face which is approximated by a finite number of discrete 
moving points, it becomes impractical to continue the 
calculation of higher derivatives indefinitely. The first 
difficulty arises in programming the appropriate forms of 
the equations derived in Appendix A. It is clearly seen that 
the calculations become progressively more complicated at 
each higher order and that there is no simple way of 
automating the procedure. The second and most basic 
difficulty arises in maintaining accuracy. The order of 
nonlinearity and the order of spatial derivative involved 
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in the calculations increase with each order of time deriv- 
ative calculated. Ultimately, the ability to make accurate 
numerical estimates, particularly of high orders of spatial 
derivatives, is limited by the adequacy of the discretisation 
of the surface. With steep surface phenomena, such as wave 
breaking, the problem of calculating spatial derivatives is 
exacerbated by the tendency for dramatic changes in 
properties to take place over relatively small portions of the 
surface. Nonlinearity exaggerates such changes in the higher 
orders, which thus tend to lose accuracy more readily for 
steep waves than for weakly nonlinear waves. 

Nevertheless, the calculation of a limited number of 
higher order derivatives can be performed accurately for 
little added computational effort. With this information, it is 
possible to carry out the numerical time-integration of 
equations (2.6) and (2.7) more accurately for a given size of 
time-step using truncated Taylor series; if n is the order of 
the first derivative neglected in setting up the Taylor series 
for R and @ then the error for a time-step size of 6t is of the 
order of St”/n !. This provides a significant improvement 
over more straightforward algorithms that use only 
first-derivatives. 

On the other hand, for a given accuracy, larger time-step 
sizes can be tolerated, potentially providing a substantial 
improvement in running time. Setting up matrices with 
which to solve Laplace’s equation on a given surface R tends 
to be a lengthier task than the use of these matrices to 
obtain any particular solution. As a result, the advantage 
obtained by being able to use a larger time step for a given 
final accuracy is disproportionately high; running time is 
reduced by requiring the task of setting up the matrices to 
be performed much less frequently. 

3. METHODS FOR SOLVING LAPLACE’S EQUATION 

The ability to follow the wave-surface motion depends 
entirely on being able to solve Laplace’s equation (2.1). 
A number of practical numerical methods for doing this 
have been developed, with varying degrees of efficiency 
and accuracy [l-6]. An outline of some of these methods 
follows: 

The use of Green’s identity on the velocity potential 4, 

4 = f (W,, - W,,) & (3.1) 

together with the Green’s function for Laplace’s equation, 
G(r, r’) = In lr’ - rl, provides one such approach, as 
implemented by Longuet-Higgins and Cokelet [2] in 1976. 
Discretisation of this equation requires special treatment of 
the logarithmic singularity and leads to a system that is not 
easily solved using iterative means. By using matrix inver- 
sion or diagonal factorisation the resulting penalty, of 
running times that increase as the cube of the number of 
points, is especially severe for large values of N. 

The use of Green’s identity on the stream function $, 

ti = f (Wn - GlcI,) 4 (3.2) 

which, after using the Cauchy-Riemann relations, 

Al= 4, and ~,=*n~ (3.3) 

becomes 

(3.4) 

provides another possible approach [ 11. The values of 4, on 
the surface are “known,” being obtainable by differentiating 
@ along the surface as in (2.4), so that only $ is unknown. 
Having solved for +, the arclength derivative $, gives 4, 
from the appropriate Cauchy-Riemann relation (3.3). 
Representing a Fredholm integral equation of the second 
kind in II/, the resulting equations are more suitable for solu- 
tion by iteration with running times that increase only as the 
square of the number of points. 

In a slightly different formulation of the problem, the sur- 
face can be considered to form a vortex sheet with potential 
flow on either side of it [4,5]. Although the integral equa- 
tion arising from this method can be solved iteratively, 
solving for higher time derivatives is not as straightforward 
since pressure plays a different role. 

A conformal mapping technique which maps a wave 
profile onto a flat surface was developed by Fornberg [6]. 
In the mapped plane Laplace’s equation is still satisfied, and 
for deep water its solution becomes trivial in such a simple 
domain. The time taken to establish and carry out such a 
conformal mapping thus determines the running time, and 
by Fornberg’s method this increases only in proportion to 
N In N. However, it appears that such methods may have 
difficulty in coping accurately with steep wave phenomena 
such as the jets formed during wave breaking. 

Singularities such as dipoles, vortices or sources placed 
outside the body of the fluid can be used to approximate the 
complex potential within the fluid. This approach was 
implemented by McIver and Peregrine [ 161, who used a 
least-squares technique applied at discrete surface points to 
estimate the strength and position of external singularities. 
While obtaining remarkable accuracy in calculating flow 
fields using surprisingly few singularities, a least-squares 
approach in determining positions, strengths, and orienta- 
tions of singularities requires the repeated solution of sets of 
linear equations until a good fit is reached. Each solution 
takes of the order of the cube of the number of unknown 
quantities. Thus, a few singularities can be determined 
quite quickly while many will take considerably longer. 
For strongly nonlinear or complicated surfaces involving 
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(say) many distinct waves, this would prove severely 
disadvantageous. 

Cauchy’s integral theorem can be applied to the complex 
potential i(r) = 4 + it,+ which, for Laplace’s equation (2.1) 
to be satisfied, is an analytic function of the complex posi- 
tion, r = x + iy. Vinje and Brevig [3] made use of this 
property by discretising the profile r = R(t, t) = X+ iY (in 
complex notation) into linear elements and using the 
following principal value form of Cauchy’s integral theorem 
at each vertex, 

i(R)=$$&dR’ (3.5) 

where 8 is the internal angle between linear elements at the 
vertex at a point R, and where the integration is performed 
in an anticlockwise sense over a single closed contour. The 
resulting set of equations is suitable for solution by 
iteration. In contrast to the logarithmic singularity of the 
Green’s function, the simple reciprocal singularity of the 
Cauchy integral kernel is relatively easily taken into account 
in numerical approximations. 

4. USE OF CAUCHY’S INTEGRAL THEOREM 

Because of its relative simplicity, Cauchy’s integral theorem 
was selected as the basis for testing and developing a new 
numerical scheme with which to follow the evolution of a 
complex wave-surface using directly calculated higher time 
derivatives. However, we use a different formulation of the 
integral equation from that used by Vinje and Brevig [3], 
and consider the surface to consist of a smooth continuous 
profile, approximated (to high order) by a set of discrete 
points, rather than comprising linear elements. It should be 
remembered that the use of Cauchy’s integral theorem is 
only one choice among several possibilities, and that alter- 
native means of solving potential functions [ 17, 183 could 
prove equally valuable. 

4.1. Formulation 

For any harmonic function 4, the complex potential 
gradient defined as q(r) = 4, - QSy is an analytic function of 
r = x + iy. In this, as in Section 3.6, the convention that r is 
the complex equivalent of the position vector r = (x, y) has 
been introduced. Similarly, R(5, t) is taken to be the com- 
plex equivalent of the surface profile vector, R = (X, Y). It 
may be noted that the arclength derivative R, = R,/IR, 1 is 
the complex unit tangent and that iR, is the unit normal in 
the 90” anticlockwise rotated direction. Thus, with 4, and 4, 
respectively denoting the tangential and normal gradients of 
4 measured in these directions, q can also be defined such 
that 

9* = 4, + i4, = U4, + &) (4.1) 

where * denotes the complex conjugate. Applying Cauchy’s 
integral theorem (3.5) to q(r) on a smooth closed contour 
(so that 0 is exactly rc at all points) now gives 

(4.2) 

Rearranging this, 4,, is found to satisfy the integral equation 

where the arclength s’ is a scalar variable which is taken (in 
this equation) to increase in an anticlockwise sense around 
one entire closed contour. The primed variables, R’, 4: and 
dJk are evaluated at points on the surface corresponding 
to s’. 

The horizontal-bottom condition (2.3) can be taken into 
account by assuming that the fluid extends continuously 
below y = -h to a reflection of the surface in the bottom, as 
shown in Fig. la. The motion of this reflected surface 
must exactly mirror the real surface so that the reflection 
condition 

q(R* - 2ih) = q*(R) (4.4) 

will hold. The Cauchy formula (4.3) can now be applied to 
the contour formed by combining the surface with its 
reflection, leading to the integral equation, 

in which s’ is taken to increase from right to left along the 
surface only. In cases where the contributions to the 
integrals at large negative and positive values of x can be 
estimated analytically, this equation can be used as the basis 
for a numerical scheme to solve interatively for 4,. This 
would be the case, for example, in studying solitary waves or 
hydraulic jumps [ 11, 143. 

For the purpose of exploring the method, however, it is 
sufficient and perhaps most illustrative to focus attention on 
situations in which the surface is periodic in x. No generality 
is lost in taking time and space dimensions to be suitably 
scaled to make this period exactly 27~. The infinite fluid sur- 
face is then transformed into a finite closed contour by the 
conformal mapping for which 

Q(k t) = exp( - iR(5, t)), (4.6) 
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0 0 i- 
FIG. 1. Example of a periodic surface and reflection transformed into 

closed contours. The impermeable flat bottom is shown dotted. 

as shown in Fig. lb. The Cauchy formula (4.3) can now be 
applied to the combination of this contour and the transfor- 
mation of the reflected surface, at which condition (4.4) is 
applied. Expressing the resulting integral equation in terms 
of the parameter < rather than s it becomes 

+ 
f ( 

Jzt Im -- 52, 
Q-l2’ Q-HjQ’* > 

4; &‘, (4.7) 

where H = exp( -2/r), #c is the derivative of 4 with respect 
to < along the surface, and where qSy is the normal gradient 
of 4 in the physical r-plane, scaled by 1 R, I. The reversed sign 
of the integral kernels in this equation, compared to (4.3) 
and (4.5), is adopted because we now choose (purely for 
convenience) to integrate in a clockwise sense, as 5’ 
increases from left to right on the surface. Provided this 
equation can be solved for +,, the complex potential 
gradient of 4 in the physical plane is then given by 

It can be noted that the term arising from the bottom 
condition in the integral kernels of equation (4.7) does not 
vanish as H + 0 (that is h + co ). This seems surprising since 
it must be possible to omit the term completely for a 
“bottomless fluid”-which may be considered to be almost 
synonymous with a “fluid of infinite depth” (one for which 
H + 0). However, it is also true that the deep-water limit 
of the bottom-condition term, ~?,/a, makes no overall 

contribution to the integrals. It can therefore by subtracted 
from this term, changing it to 

HL2,$2’* 

Q(i-2 - H/Q’*)’ (4.9) 

which does vanish as h -+ co. Besides making the equations 
continuous with their form for a “bottomless fluid,” this 
makes a considerable difference to the diagonal dominance 
of the matrices representing the integral kernels and hence 
to the iterative behaviour of the final numerical scheme. The 
effect is so dramatic that the algorithm actually improves 
from being iteratively divergent, when the alteration is not 
made, to being convergent. 

4.2. Implementation for Periodic Surface 

In order to solve equation (4.7) numerically it is now 
convenient firmly to identify 5 as a point-label parameter, 
for which R(& t), or R(c$, t), and @(t, t) are taken to be 
known only at integer values of 5. The values inbetween are 
assumed to vary smoothly and continuously as functions of 
5 so that reasonable estimates of R and @ at any non-integer 
values of 5 can be made. Most particularly, derivatives with 
respect to 5 can be estimated. It is also possible to estimate 
integrals with respect to 5 as required in equation (4.7). 
Indeed, because the functions are all periodic in 5 and values 
are known at evenly spaced (unit-interval) values of 5 
the best available quadrature formula for integration over 
one whole period reduces to a simple trapezium or 
(equivalently) step-function approximation. 

By considering a Taylor series expansion for Q’ it can be 
seen that 

&=&+gf+O(r’-S). (4.10) 
< 

Thus only the real part of Q,/(Q - Q’) is genuinely singular. 
The imaginary part is made continuous by replacing its 
value at 5’ = 5 with Im(S2,,/2Q,). By subtracting dc/(< - 5’) 
from the real part in Eq. (4.7), this is also made continuous 
as follows. 

(4.11) 

where N is the number of points on the surface. The last 
integral on the right hand side vanishes, and the integrand 
within square brackets has the Taylor series expansion 
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Re 

4,-=+0(5’-5) 

br-d55+0(4’-5). (4.12) 

Using this result to replace the value at t’ - 5 the integrand 
becomes continuous and excellent estimates for the results 
of the contour integral can be obtained using a step-function 
approximation. Except at the point g’ = r, the subtraction 
of dc/(& r’) can be seen to have no overall effect. It 
can thus be omitted, leading to the following quadrature 
representation of the integrals of equation (4.7) 

C’= 1 5’ = 1 

where 

(4.13) 

(using the modified form (4.9) of the bottom contribution). 

5. NUMERICAL IMPLEMENTATION 

5.1. Basic Procedure 

A program was written using the formulae (4.13) to solve 
for potential gradients. Given a smooth periodic discretisa- 
tion of the surface, the transformation (4.6) is made and the 
matrices of Eq. (4.13) are calculated. With @ defined on the 
surface, the same matrices are used to calculate up to the 
third Lagrangean time-derivatives of R and @ by the 
methods described in Appendix A and Section 3.2. Starting 
with relatively short time-steps, a variable-step backward 
differencing procedure (described in Appendix C) is applied 
to the previous 1; values of the calculated third derivatives 
to estimate up to 1; further time-derivatives, where the 
order of backward differencing lb is incremented at each 
time-step from zero (at the start) to a maximum value of 
I, < 5 after 1, time-steps. At each step, a truncated Taylor 
series of order 1; + 3 is then used to march the surface 
values of R and @ forward in time, involving a typical error 
(due to time-stepping) of the order of (6t)‘bC4 per time step. 

Reduced step-sizes are also, occasionally, chosen either to 
ensure that calculated surface data can be obtained at pre- 
selected times or, particularly when I;I is increasing near the 
start of a calculation, to prevent time steps from increasing 
more rapidly than a chosen ratio (usually about 1.3). 

The same parameter E is also used to determine the 
appropriate stage at which iteration for the potential 
gradients may cease. Because each order m of derivative 
contributes an amount to the time-stepping that is of order 
0((6t)“/m !), it is consistent with the expected accuracy of 
time-stepping to calculate the normal potential gradient for 
derivatives of order m to an accuracy of only m ! E(~-~) 7’24. 
The solution is considered to be adequate when the maxi- 
mum change over three successive iterates is significantly 
less than this value. The overall rate of iterative convergence 
is enhanced by applying Shank’s transform, 

f, =f + (f0-f,Nf2-f1) 
0 I 

fo-v-1 +.fi ’ 
(5.1) 

Apart from an initial relatively short time-step, the size of after every two iterations, wherefrepresents any one of the 
time-step 6t that is normally used for this is calculated as the surface values of 4,. This formula is based on assuming a 
geometric mean of the time-step sizes that would make the geometric progression for the sequence of iteratesf,,f, , and 

maximum contributions within the Taylor series of the third 
and fourth derivatives equal to a specified small “precision” 
parameter E. As the wave surface develops, the size of time 
step is thus automatically varied more-or-less to compen- 
sate for the vigour of the motion. Also with this choice of 
time-step, running times, which are approximately propor- 
tional to t/(&), become of the order of O(~E-~‘*~), so that a 
reduction in the value of E by a factor of 10 results in about 
a doubling of running time. Using only two orders of back- 
ward differencing, the accumulated error (due to time- 
stepping) over t/(Jt) time-steps becomes of the order of 
O( t&35/*4); with higher orders of backward differencing, 
time-stepping is generally more accurate than this. 

In practice, the allowable size of time step may sometimes 
need to be restricted below this choice. For a given point 
distribution at any given stage in an evolution, repeated 
time-steps larger than some threshold size lead to a strongly 
growing numerical instability that must clearly be avoided 
if accuracy is to be maintained. This is discussed in more 
detail later in Section 7. In fact, in order to demonstrate the 
existence and effect of this strong instability, time-steps were 
not restricted below this threshold value in the example 
calculations presented below. Briefly, the strong instability 
threshold is most likely to be exceeded for increased point- 
densities on the surface, for increased values of E (because 
these tend to increase the size time-step) and for larger 
values of I, (which tend to reduce the instability threshold). 
Naturally enough, when time-steps are limited in this way, 
running times no longer vary significantly with E and the 
accuracy of time-stepping is typically better than predicted 
in the previous paragraph. 

5X1/103/1-8 
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f2 towards (or even away from) a solution, and resets the 
values of 4, to the limit of the progression. This is then used 
as the starting point for the next two iterations. The effect of 
this formula was found to be remarkable enough that, 
without including the modification (4.9) to the integral 
equation, accurate solutions were obtained even for otherwise 
diverging iterations! The total number of iterations is 
further reduced by using linear backward differencing to 
predict a good starting value for iteration from the solutions 
at two previous times. 

As illustrated in the examples below, it is occasionally 
found to be either necessary or useful to use additional pro- 
cedures in order to perform specific manipulations of the 
surface data. For example, “smoothing” of the calculated 
surface values may be used to inhibit the formation of 
significant short-wave modes (having a wavelength of the 
order of two or three grid points). Since, as seen later in 
Fig. 6, the behaviour of such short modes is calculated with 
an error in frequency of up to about 17 %, this may be used 
as a means of ensuring that only those modes that are much 
more accurately calculated are allowed to contribute to a 
given numerical simulation. Smoothing formulae may also 
be used (if necessary) to provide some control over numeri- 
cal instability [2] (see Appendix B), or as a means of 
ensuring that data points remain “smoothly” distributed. 

A second procedure is designed to ensure that the mean 
surface level and energy would remain globally conserved. 
This is especially useful in following wave evolutions over a 
very long time where asymptotically meaningful results are 
only possible if energy is conserved. This and the procedures 
for smoothing are discussed in Appendix B. 

Many of the calculations, including setting up the 
matrices (4.13) and making the transformation (4.8), 
involve calculating derivatives with respect to the point- 
label t. The accuracy with which this can be done, using a 
minimal point density, is vital to the efficient running of the 
numerical scheme. It is possible to use a fast Fourier trans- 
form or spectral technique for this, but the global nature of 
this method was felt to be undesirable in that a local inac- 
curacy or lack of “smoothness” about any one point would 
immediately affect the results at every other point. Instead it 
was decided to use high-order polynomial-based formulae. 
Estimates of the first and second derivatives using centrally 
based 1 l-point (10th order) fitted polynomials were used; 
the formulae for these are presented in Appendix C. 
The worst error arising from the use of these formulae is 
asymptotically very small indeed, being a relative error of 
the order of ISr/21 lo, while values at more than live points 
distant have no effect. 

5.2. Some Examples 

52.1. Propagation of a Steep Steady Wave 
The program was tested using highly accurate initial data 

for a steep deep-water periodic wave of constant waveform 

FIG. 2. Propagation of a steep steady periodic wave of amplitude 
ak = 0.42 using 20 points. The initial continuous surface is shown as well as 
the surface points (marked +) after five wave-periods (natural scale). 

with amplitude ak = 0.42. This wave has a height that is 
about 95 % of that of the steepest wave; it is also very close 
to the steady wave, of amplitude ak ~0.4292, which has 
maximum energy and above which steady waves become 
unstable to normal mode perturbations of the same 
wavelength as the basic wave [19]-this is described as a 
“superharmonic” instability by Longuet-Higgins [20]. It 
may be noted that the steady wave of maximum energy at 
ak z 0.4292 carries only about i % more energy than the 
wave of height ak=O.42. The initial data were obtained 
using a method (described elsewhere [21]) which gives a 
distribution of points on the wave-surface that reproduces 
itself every time any one point passes through that part of 
the wave previously occupied by its neighbouring point. In 
many ways this is an optimal point distribution since, effec- 
tively, the local point-density over any section of the surface 
remains constant as the wave propagates. 

With a value of lop4 for E, taking I, = 2, and using 
only 20 surface points, the wave was allowed to propagate 
for live periods. Figure 2 shows the initial wave and the 
points for the same wave at the end of that time. The final 
points coincide with the initial wave profile to well within 
graphical accuracy. The mean phase-speed resulting from 
the unsteady calculation was found to be in error by only 
0.0012 %, while the final values of the wave height and total 
energy were found to be within 0.049 % and 0.009 %, respec- 
tively, of their initial values. There was no sign of any 
numerical instability and, in calculating this example, the 
program used 2 4 min of CPU time on a SUN 3/50 desktop 
workstation fitted with a floating-point processor.* All 
quoted running times below were obtained on this relatively 
small computer. 

5.2.2. Small-Scale Breaking of a Steep Unsteady Wave 

Using the same initial surface properties for steady 
propagation in deep water, the steep steady wave described 
above was perturbed by suddenly applying a flat-bottom 
condition at h = 3. (The mean surface level in the initial data 
lay at y = 0, and it may be recalled that the wavelength is 
taken to be exactly 271). As should be expected, the wave did 

*This is approximately equivalent to the time a VAX 750 computer 
would require. An IBM compatible XT personal computer, tited with a 
mathematics coprocessor operating at 8 MHz took only 74 min to perform 
the same calculation. 
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not maintain its initial waveform but steepened on its front 
face until, shortly after two wave periods, a small section 
near the peak of the wave overturned. A detail of this por- 
tion of the wave is shown in Fig. 3. For illustration, dotted 
lines are placed at 120” to each other near the breaker. This 
corresponds to the angle of the sharp corner at the crest of 
the limitingly highest steady wave. Taking I, = 2 and using 
a value of lop5 for E and 40 surface points, this example 
took 10 min to compute. 

5.2.3. Large-Scale Breaking of a Steep Unsteady Wave 

A much larger breaker was produced in the same way, by 
imposing a shallower depth of h = $. The peak of this wave 
overturns in about half of a wave-period, producing a large 
jet of fluid that is projected forward. Successive profiles of 
this big breaker are shown in Fig. 4. Using 60 surface 
points, I, = 2 and F = IO-‘, this test of the program took 
13 i min to run. 

5.2.4. Evolution of a Modulation 

A modulation of 10% was applied to a periodic train of 
eight carrier-waves of amplitude ak = 0.09 in deep water. At 
maximum growth of this modulation some waves in the 
group are increased to an amplitude at which they are just 
short of breaking [ 121. It was found to be adequate to use 
only 8 points per wave with E set equal to 10P4-this main- 
tains an accuracy of about 0.15 % per wave-period in 
following a steady wave of amplitude ak = 0.09. The 
evolution was then allowed to continue for 400 wave- 
periods. Any drift in the total energy and mean-surface level 

Fig. 3. Detail of a small-scale breaker formed after applying a flat- 
bottom at h = -3 to the wave in Fig. 2 (natural scale). 

over this long time scale was eliminated using the proce- 
dures described in Appendix B. Fifth-order backward 
differencing, lB = 5, was used in this calculation. 

Figure 5 shows an isometric view of the time-develop- 
ment of the surface profile, sampled every two linear wave- 
periods when the wave positions and wave-group are very 
nearly coincident-the linear speed of propagation of the 

FIG. 4. Successive profiles in the formation of a large-scale breaker 
formed by imposing a flat-bottom at h = 4 to the wave in Fig. 2 (natural 
scale). 

XJ 1 t (periods) 

FIG. 5. Time-development of a modulated 
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h 

FIG. 6. (left) Numerical dispersion relation (solid line) compared with the exact relation (dotted line); (right) comparison between the numerical 
phase speed c, group velocity cs, and their “exact” values (shown dotted). 

wave group is about half that of the waves themselves in 
deep water. This extensive calculation took 12 h of CPU 
time to compute on the SUN 3/50 computer.3 

6. ACCURACY AND SPEED 

While also providing some illustrative examples of wave 
motion, the results described above give some indication of 
the capabilities and properties of the program. The 
following tests provide a more quantitative view of the 
properties of the algorithm, with the primary aim of 
investigating its accuracy, speed, and any other limitations. 

6.1. Dispersion Relation 

The linear dispersion relation for sinusoidal deep-water 
gravity-waves shows that the wave-frequency w  satisfies 
o2 = gk, where k is the wave-number. Supposing that N sur- 
face points, uniformly spaced in x between 0 and 2n, are 
used on the surface to describe very small amplitude waves, 
then up to N/2 independent wave-numbers can be introduced 
and examined numerically. The wave with wavenumber 
k = N/2 is described by only two points per wave period. 
By numerically calculating the frequency of very small 
amplitude sinusoidal standing waves described by differing 
numbers of points per period, the numerical wave-frequency 
for each wavenumber between 1 and N/2 could be com- 
pared with the frequency predicted by the linear dispersion 
relation. In obtaining these results, the precision level was 
set to 10e5 multiplied by the amplitude of the waves, and 
very small time-steps were imposed to ensure that the 

3 For comparison, this calculation took 82 min of CPU time on a SUN-4 
(SparcStation 1) and 51 CPU min on a Stardent computer containing four 
P2 processors. By using the four processors in parallel (with little vectorisa- 
tion), the latter machine actually used an elapsed time of only I3 min. 

. 

resulting phase relations are, effectively, independent of any 
iterative convergence or time-stepping errors. 

Figure 6a presents this comparison in terms of a graph of 
o2 versus k for which the true linear dispersion relation is a 
straight line of slope g. The numerical results can be seen 
to underestimate the frequency by about 17% for wave- 
numbers of around N/2, by about 3 % around N/3, and the 
results become extremely good as the wavenumber is 
reduced to below about N/4. At this wavenumber, only four 
points are being used to describe each wave and yet the fre- 
quency is accurate to better than 4 %. The variation of phase 
speed c = w/k and group velocity cg = dujdk (deduced from 
the numerical dispersion relation) are presented in Fig. 6b, 
along with the ideal linear-wave values of c = 2c, = (g/k)‘/‘. 
While the numerical phase-speed is at least qualitatively 
correct (although in error by up to about 17 %) in the 
region of k = N/2, the group velocity erroneously decreases 
to zero as k approaches N/2. The accuracy of the numeri- 
cally calculated dispersion relation can be seen to follow a 
similar pattern to the accuracy found for the numerical 
differentiation formulae (C.8bplotted in Fig. 12. 

6.2. Dependence on Program Parameters 

6.2.1. Number of Points 

Using the same steep steady wave of amplitude ak = 0.42 
as was used in Section 5, the program was tested over five 
particle or phase periods (see table caption) using different 
numbers of surface points. Using two orders of backward 
differencing, the percentage changes found in wave height, 
mean surface level (as a percentage of wave-height) and 
total energy, the error in the mean phase-speed, and the 
running time are all shown in Table I. 

It can be seen that the program succeeds remarkably well 
in maintaining the basic properties of this large wave using 
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TABLE I 

The Effect of Point Density on Performance for a Wave of Height 
ak = 0.42, Calculated Using E = lo-’ and IB = 2 

Number 
of points 

Percentage change over five periods in 
Running 

Wave- Mean-level Total Phase speed time (s) 
height energy 

8 0.46087 -0.05501 -0.44617 0.16299 93 
10 -0.03252 -0.01174 -0.10861 0.04666 129 
12 0.12610 -0.00296 -0.02859 0.01433 154 

15 0.04562 -0.00044 -0.00381 0.00337 209 
20 0.01144 -0.00002 0.00023 0.00047 327 
24 0.00364 -0.00002 0.00025 0.00013 452 
30 0.00073 -0.00002 0.00013 0.00003 697 

Note. The change in total wave height is calculated over five particle 
periods while the remaining quantities are calculated over five phase 
periods. 

as few as 10 to 15 points. Even when represented by only 
eight surface points, the errors per period are of the order of 
0.1 % or less. The running time in these examples is found to 
increase in approximate proportion to N + N */20, reflecting 
the quadratic dependence of the iterative method of solution 
on the number of surface points (when calculated using a 
scalar processor). 

62.2. Precision Control Parameter, E 

In order to investigate the effect of changes in the preci- 
sion parameter E, this same wave was observed over live 
wave-periods using the values of E shown in table II. Thirty 
points were used in this test of the program. 

The accuracy per wave period of the program in calcu- 
lating the mean-surface level, total energy, and phase-speed 
of the wave can be seen from this to be reasonably well 
approximated by the predicted estimate of .s35’24 for values 
of E smaller than about 3 x 10p4. Also, as expected, 

changing the precision parameter by a factor of 10 results in 
a change in the running time by a factor of about 2. 

However, the total wave-height, which is measured from 
the highest extrapolated point to the lowest, does not 
appear to be so well conserved. This is partly an indication 
that the accuracy of about 0.001% obtained for very small 
values of E is as good as can be achieved using only 30 
points. This view is backed up by the observation that a dif- 
ference of approximately 0.0014% is found in comparing 
the amplitudes of Fourier decompositions of the initial 
steady-wave data obtained using 30 points and 120 points. 
The more accurate data (based on 120 points) was used in 
providing initial conditions for calculating Table II, but it 
seems clear that 30 points remain unable to represent this 
data to an accuracy of better than about 0.001%. 

More fundamentally, it is found that steady calculations 
of this steep wave cannot be continued indelinitely. Despite 
the fact that such a wave should be “stable” to short- 
wavelength perturbations (those longer than the basic 
wavelength are eliminated by imposed periodicity), a 
growing disturbance is found to lead to a breakdown in the 
numerical calculations that is discussed further in the next 
section. In particular, the program becomes unable to 
continue computing the motion after the number of periods 
shown in the rightmost column of Table II. It can be seen 
that this failure appears sooner for larger values of E (which 
involve larger explicit time-steps) so that the wave heights 
shown for E greater than about 3 x 10m4 are noticeably 
affected by this unsteady transient. 

6.2.3. Order of Backward Dlfferencing, I, 

The effect of different orders of backward differencing on 
this calculation was investigated by imposing different 
values of fB (between two and five) in following the wave of 
amplitude ak = 0.42 using 30 surface points and E = 10p4. 
The resulting basic properties of the wave after two 
wave-periods are shown in Table III. 

TABLE II 

Dependence of Performance on E for a Wave of Height nk = 0.42, Calculated Using 30 Surface Points and lB = 2 

E Wave-Height 

Percentage change over two periods in 

Mean-level Total energy Phase speed 
Running Breakdown 
time (s) at period 

IO-' - 1.10570 -1.17859 0.07692 92 2.0 
3 x 1om4 -0.25462 -0.00136 0.00096 0.00007 91 3.9 

lo-4 0.00493 0.00032 0.00121 0.00002 134 6.6 
3 x loms 0.00160 0.00006 0.00021 0.00001 206 11.0 

10ms 0.00100 0.00000 0.00006 o.oooo1 277 15.6 
3 x 1o-6 0.00087 0.00000 0.00001 0.00001 406 22.3 

10m6 0.00086 0.00000 0.00000 o.oooo1 584 30.6 

Nore. The percentage change in wave-height is based on two particle periods as in table I. 
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TABLE III 

Dependence of Performance on the Order of Backward Differencing I, for a Wave of Height ak = 0.42, 
Calculated Using 30 Surface Points and E = 10e4 

Percentage change over two periods in 
Running Breakdown 

IL3 Wave-height Mean-level Total energy Phase speed time (s) at period 

2 0.00493 0.00032 0.00121 0.00002 134 6.6 
3 - 0.00073 -0.00007 -0.00016 0.00000 137 6.6 
4 -0.00021 0.00000 0.00010 0.00001 136 7.2 
5 0.00429 0.00008 0.00033 0.00002 139 6.5 

Note. As before, the percentage change in wave-height is based on two particle periods. 

These calculations show that some increase in the order 
of backward differencing tends to produce some enhance- 
ment of accuracy, although this enhancement is lost as the 
order of backward differencing is increased further. The 
effect on running time is negligible. It is also clear that some 
instability is still present for all values of I, between two and 
five and, because breakdown occurs at more or less the same 
time in each case, this instability appears to be relatively 
independent of the order of backward differencing, at least 
for large amplitude waves and small values of E. 

7. STABILITY 

The numerical breakdown observed in Tables II and III 
shows that, at least for the control parameters 1, and E used 
in these calculations, some numerical instability is present. 
As has already been shown in the examples calculated in 
Section 5, these instabilities are not necessarily a hindrance 
to making realistic calculations, but their presence is a cause 
for concern. In other similar numerical algorithms [2] 
(much more strongly plagued by the growth of a ‘sawtooth’ 
mode), smoothing was used to maintain stability. As 
described below, this is equally effective in this algorithm. 
However, a more detailed understanding of the nature of 
any numerical instability can be very valuable in revealing 
how it may be avoided. Moreover, understanding the 
nature of any underlying instability and the way in which it 
is being controlled allows one to have greater confidence in 
any calculated results. 

A referee suggested that because it is not certain that the 
mathematical model for the wave-surface is well defined for 
all time, some of the difficulties may be due to the non- 
linearities of the model and not to the numerical method. It 
is indeed true, in general, that solutions can develop 
singularities in finite time. The known evolution of some 
unsteady or unstable solutions towards the formation of 
sharp jets or overturning breakers, which reconnect with a 
lower part of the surface as already calculated in Figs. 3 and 
4, are cases in point. However a stable, steadily propagating 

wave solution [ 19, 201, such as that calculated in Tables II 
and III, should exist for all time, and so a good numerical 
method should at least be able to reproduce such a solution 
for a very long time, if not indefinitely. 

In examining the stability of the algorithm, we use two 
approaches. The first is the examination of a range of cases. 
We calculate the full unsteady evolution of stable steadily 
propagating waves of different amplitudes with different 
numbers of points for different values of the parameters 
I, and E. In fact, even though there is often no apparent 
problem for a long time, all of these calculations are even- 
tually found to break down and, by observing the ways in 
which the times to breakdown vary from case to case, one 
can surmise that there are three possible forms of instability. 

Next, an analytical study of the linear stability of the 
numerical method for a flat surface reveals the cause of two 
of these instabilities. It also shows how a suitable choice for 
I, and a restriction on the maximum allowable size of time- 
step can be used to remove these instabilities. The third 
instability still appears to be present, albeit usually very 
slowly growing. The root cause of this instability is not 
examined in this article, although it is speculated to arise 
from the poor description of the group velocity cg for the 
shortest resolvable wavelengths, as discussed in Section 6.1. 
However, by way of a test case, it is shown that this 
instability can be completely eliminated using very selective 
smoothing, leading to an asymptotically stable and accurate 
numerical scheme. 

7.1. Weak, Strong, and Steep-Wave Instabilities 

7.1.1. Steep- Wave Instability 

The instability observed in Section 6.2 also appears to 
arise and to behave similarly for lower amplitude waves that 
are not close to the “superharmonic” instability threshold 
[ 19, 203. The main difference arising at lower amplitudes is 
that the time-scale over which the instability leads to 
breakdown is lengthened, as illustrated in Table IV. Inter- 
estingly, for each of the values of E shown in this table, the 



EFFICIENT SURFACE-INTEGRAL ALGORITHM 103 

TABLE IV 

Number of Periods to Numerical Breakdown for a Range of 
Wave Amplitudes and Values of E 

Amlitude, ak 

E 0.4292 0.42 0.40 0.35 0.30 0.20 0.10 

3 x 1om4 2.2 3.9 6.2 12.2 20.3 58.0 157.3 
10m4 4.3 6.6 10.8 20.7 34.6 98.6 383.8 

3 x 10-s 7.4 11.0 18.7 35.1 59.4 166.2 623.9 
10-s 10.0 15.6 25.6 54.7 93.8 246.3 984.5 

I~n14m.x 0.102 0.162 0.282 0.602 1.01 2.50 7.27 

Note. Calculations are performed using 30 points and la = 5. 

times to breakdown for waves of different amplitudes seem 
to remain in approximately the same ratio to each other. 
These times all increase as the wave-steepness decreases, 
and it is also interesting to observe that there appears to be 
a fairly close correlation between them and the magnitude 
of the radius of curvature of the wave surface at its peak 
(based on a wavelength of 2n), multiplied by the normal 
pressure gradient at that point, as presented in the final row 
in Table IV. 

Also, broadly speaking, the times to breakdown increase 
by a factor between about 2 f and 3 as E is reduced by a fac- 
tor of 10. It is worth noting for each of these calculations 
that, when E is small, the wave propagates without change 
of form for many time-steps before an instability becomes 
apparent. Disturbances are then still found to grow at a 
relatively slow rate (per time step). Nevertheless, these 
disturbances eventually swamp any “real” data being 
calculated. Because the steepness of the wave makes a 
considerable difference to the time-scale over which this 
instability grows, it seems reasonable to identify it as a 
“steep-wave instability.” 

From the consistency of the results in Table IV, one 

TABLE V 

Numbers of Periods to Breakdown for Different Values of c and 
Different Orders of Backward Differencing for a Moderately Steep 
Wave and for a Gentle Wave 

I,forak=O.l andN=20 la for uk = 0.3 and N = 40 

E 2 3 4 5 2 3 4 5 

IO-* 5.95 7.47 4.31 6.09 1.77 1.61 1.60 1.30 
3x10--’ 400 27.0 8.21 6.97 4.42 3.41 2.67 2.51 

1om3 614 66.5 41.2 38.5 7.88 7.55 7.53 7.40 
3 x 1om4 391 172 279 784 14.9 14.9 15.4 14.5 

1om4 581 597 900 951 25.8 25.6 26.8 23.6 

Note. To ensure that breakdown was not due to (say) an excessive drift 
in total energy, procedures for conserving energy and mean level were 
employed during the long calculations for the wave of steepness ak = 0.1. 

might be led to believe that there is only this single form of 
numerical instability. However this is far from the truth. 
There appear to be at least two other identifiable forms 
of instability, as illustrated by the two wave calculations 
presented in Table V. 

7.1.2. Strong Instability 

It can be seen that a second rapidly growing type of 
numerical instability is encountered when time-steps are 
sufliciently large. Over only a few steps, a disturbance in the 
numerical data is found to appear and to grow catastrophi- 
cally, quickly rendering the calculation meaningless. For the 
wave of steepness ak=0.3 with E = 10e2 solutions broke 
down after between only 15 time-steps (for lB = 5) and 20 
time-steps (for 1, = 2). This instability has mostly been 
avoided in the calculations presented previously by 
choosing relatively small values of E and N. However, it is 
clearly discernible in Table V for increased values of E 
(which result in increased sizes of time-step)--one can 
observe that there is a fairly abrupt decrease in the time- 
scale over which the calculations break down. Also, unlike 
the results for the “steep-wave instability” of Table III, the 
time-scales over which the solutions break down now 
depend on the order of backward differencing. This “strong 
instability” appears at shorter time-steps (smaller values 
of E) and typically grows more rapidly when la is larger. 

7.1.3. Weak Instability 

At smaller values of a (say E = 10p4) for which the “strong 
instability” is avoided the two calculations in Table V break 
down differently. As in Table III, the time at which the 
calculation of the steeper wave breaks down is relatively 
unaffected by the order of backward differencing. 
Breakdown also occurs earlier than for the corresponding 
calculations in Table IV (indicating some reduction 
through increased point-density). These features all tend to 
indicate that the failure in these calculations is at least 
dominated by the same “steep-wave” instability. 

By contrast, when E is sufficiently small, the times of 
breakdown in the calculations involving the gentler wave 
are different for different orders of backward differencing. It 
can be seen that the failures that arise when using four or 
five orders are consistent with the “steep-wave” type of 
breakdown identified in Table IV. However, possibly 
because this form of breakdown is very slow for such a 
gentle wave, another form of instability has time to grow 
and to destroy the calculations at an earlier stage when two 
or three orders of backward differencing are used. This 
“weak instability” appears to emerge only at these orders of 
backward differencing, and to be not as much affected by 
the wave amplitude as the “steep-wave” instability, which 
predominates at large enough wave-amplitudes. 
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FIG. 7. Wave profiles shortly before breakdown due to (from top to 
bottom): (a) a strong numerical instability; (b) a steep-wave numerical 
instability; and (c) a weak numerical instability (details in the text). The 
top two profiles are plotted at their natural scale while the bottom profile 
is vertically exaggerated by the factor three. 

Some of the reasons for the appearance of these 
instabilities, including their dependence on time-step size, 
point density and order of backward differencing, are 
presented later in this section. However, in order to 
iflustrate the natures of these instabilities more satisfac- 
torily, surface profiles from three different calculations are 
plotted in Fig. 7. Using 60 surface points, E = 10e4, 
fifth-order backward differencing and the same wave with 
ak = 0.3, profiles just before breakdown are presented in 
Fig. 7a (showing a case of the strong instability after only 15 
time-steps, or 1 $ wave periods) and in Fig. 7b (showing the 
steep-wave instability after 13 a periods). Using two orders 
of backward differencing and 20 surface points with 
E = 10 P4, a case of the weak instability, arising for the wave 
of amplitude ak = 0.1, is presented in Fig. 7c after 550 wave 
periods. 

All three wave profiles display a “sawtooth” character, 
with successive points either raised or lowered. However, 
the range of sawtooth behaviour appears to be almost 
uniform in the cases of the steep-wave and weak insta- 
bilities, while it is very localised behind the crest of the wave 
(which propagates from left to right) in the case of the strong 
instability. The pictures clearly result from a production of 
predominantly “sawtooth” disturbances. With the strong 
instability, these appear to emerge spontaneously, especially 
from the region of the crest. 

7.2. Effect of Smoothing 

From the examinations above, it seems clear that the 
strong instability can be eliminated simply by ensuring that 
time-steps remain sufficiently small; the weak instability is 
eliminated by selecting either four or five orders of back- 
ward differencing (rather than two or three). However, the 
steep-wave instability always appears to be present, 

regardless of the number of points, the amplitude of the 
basic steady wave, the order of backward differencing, or the 
value of the precision control parameter E. Because of this, 
it presents a fundamental difficulty in calculating asymptoti- 
cally long-time evolutions. Many of the calculations pre- 
sented above can be seen to survive for very many wave 
periods with no obvious sign of any difficulty. Thus, the 
instability may not present a significant problem for calcula- 
tions over sufficiently limited time-scales, which can always 
be lengthened by suitably reducing E. The calculations 
presented in Section 5 are all of this nature. 

Nevertheless, the difficulty still remains. Any perfectly 
steady “stable” wave (in the sense that it does not suffer 
from a normal mode instability) should be expected, in prin- 
ciple, to be able to propagate unchanged indefinitely-a 
property that the numerical scheme is clearly unable to 
reproduce without further adjustments. 

One possible adjustment is the use of “smoothing,” the 
effect of which is simply to remove very short wave-modes, 
having a wavelength of about two grid points. Using a 
highly selective 15-point “sawtooth” smoothing formula 
(described in Appendices B and C), to smooth the values of 
R(5, t) and @(t, t) after every time-step, the situation is 
almost completely recovered as seen in Fig. 8. Taking a 
total of 60 points, setting E = lop4 and 1, = 5, and using the 
routines described in Appendix B to ensure conservation of 
mean level and total energy, the large wave of amplitude 
ak = 0.42 was followed for a total of 4000 wave-periods ! By 
contrast, the calculation of the same wave under the same 
conditions without smoothing broke down after only 13 i 
phase periods. A Fourier decomposition of the resulting 
calculated wave profile at every hundredth period is shown 
in Fig. 8. Because the most significant modes in the wave 
decomposition remain practically constant, it is readily seen 
from this that the wave profile is substantially preserved. 
Remarkably, the overall error in phase-speed in this exten- 
sive calculation was no more than lop6 %. Some energy 
is, nevertheless, transferred into short wavelength modes 
which seem to persist indefinitely. Their amplitude is, 
however, relatively small at between about 0.0002% and 
0.0008 % of the basic wave amplitude. 

It may be noted that when the strong numerical 
instability is not present (as in this calculation), it should 
not strictly be necessary to smooth the surface data at every 
time-step in order to stabilise the wave--disturbances grow 
very slowly and take many time-steps to accumulate. 
However, the 15-point formula is so selective in destroying 
only short wavelength modes that its much more frequent 
(and even repeated) use makes very little difference in such 
a calculation. Smoothing does, however, make a major 
difference in controlling the appearance of the strong 
numerical instability. 

More general aspects of smoothing are discussed further 
in Appendix B. 



EFFICIENT SURFACE-INTEGRAL ALGORITHM 105 

FIG. 8. 
periods. 

’ (periods) 

Amplitudes of the Fourier components a, of a wave of steepness ak =0.42 plotted at every 100 wave-periods in an evolution lasting 

7.3. Analysis of the RBle of Explicit Time-Stepping 

Some insight into the nature of the instabilities that have 
been identified can be obtained by examining the effect of 
the method of time-stepping. Together with the numerical 
dispersion relation discussed in Section 6.1, this analysis 
reveals the linear stability of the numerical method for a flat 
horizontal surface. 

7.3.1. Model Problem 

The effect of time-stepping is most easily examined by 
considering a model situation. Let us suppose that a linear 
time-periodic wave-mode y = y, = exp[i(ot - kx)] is 
present at a time f = 0, so that calculated derivatives at this 
time are precisely 

y, = iwy,, 

Y,, = -~2YoT (7.1) 
3 

Y,,, = --Iw Yo, 

etc. This would, for example, model waves of very small 
amplitude on an otherwise flat horizontal surface or, at least 
asymptotically, on a surface that changes over length and 
time-scale scales that are very much longer than the 
wavelength and period of the model wave. The numerically 
time-stepped evolution of y may be taken to behave 
differently, adopting the form 

y = exp[ (y + i) ot - ikx], (7.2) 

in which the values of y are calculated only at succes- 
sive times incremented by, say, 6t (for a constant size of 
time-step) and in which a numerical growth-rate eigenvalue 
y is taken into account. Derivatives at each time-step, 
however, may be taken to be calculated “accurately” as in 
Eq. (7.1). 

This mimics many aspects of the full numerical algorithm 
presented here in which the three derivatives (7.1) are 
calculated without reference to any previous data, and so 
are independent of the size of time-step. For sufficiently 
short waves, down to a wavelength of two grid points, the 
relevant value of o may be taken to be known from the 
numerical dispersion relation in Fig. 6. A full linear stability 
analysis of the algorithm on a flat surface in deep water 
would produce exactly the same dispersion relation for 
vanishingly small time-steps. The linear stability for non- 
vanishing time-steps, with high-order time-stepping based 
on direct calculation of the first three derivatives and 
various possible orders of backward differencing, can then 
be separated into an analysis of Eqs. (7.1) and (7.2). Also, 
although the analyses that follow are based on constant 
time-steps, they could be extended to consider arbitrary 
sizes of time-step (at the cost of greater complexity). Typi- 
cally however, time-steps in the numerical scheme do indeed 
vary little from one step to the next so that this is not likely 
to be particularly valuable. 

To begin with, it is easily seen that a straightforward 
truncated Taylor series, based only on the “exact” deriva- 
tives (7.1), produces a growth-rate eigenvalue y given by 
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e(y+‘)“= l&G, . +(-4 ( .> 
+i A-;+ ( . . . +(-#-1”2$ > ) (7.3) 

where the order of truncation is either the even number I 
(with m = I- 1) or the odd number m (with I = m - l), 
and in which 2 represents a normalised size of time-step, 
A = 0 6t. 

Using three directly calculated derivatives (as imple- 
mented in the numerical algorithm) and, for example, 
appropriate formulae for second-order backward differ- 
encing based on the two previously calculated third 
derivatives at t = -6t and t = -2 6t, leads to the following 
formula for the growth-rate, 

~= 1+ iA A2 i’13-iJp3-4/P+l/P2 
2! 3! 4! 22 

A5 1 - . 2//l + l//J2 
-‘jj A2 ’ (7.4) 

in which we have set p = exp[(y + i) w  tit]. Since the basic 
wave is amplified by the complex factor of p from its current 

FIG. 9. Maximum real parts of the growth-rate eigenvalue y(l) for 
levels of backward differencing between zero and five. 

value at each successive time-step, the role of backward dif- 
ferencing in this formula can be seen to appear via the terms 
containing l/p and 1/p2. These correspond to the “numeri- 
cal” (and possibly inexact) magnitudes of the basic wave at 
the two previous time-steps. The last two terms in Eq. (7.4) 
respectively represent fourth and fifth derivative contribu- 
tions to the Taylor series based on a polynomial lit to the 
values of the third derivative at these and the current time. 

Formulae for the growth-rate factor p using different 
orders of backward differencing can be obtained in a 
completely analogous way. Expressing the results in terms 
of polynomials in p, the formulae for the growth-rates 
obtained using orders of backward differencing from zero to 
live can be written as 

p4=p3 [ 1 -g+i(/l--g,i3)] 

1 
+i,u2-A3-ip-A3+i-J.3 

240 10 

pl=p’[l I’-+ j(*- 

17 

720 
“2 h - 2837 
2 10080 ,I3 

(7.5) 

+v 4 
13823 
40320A .3 - b3 

8131 
20160 A3 + 4’ 

5771 
-A3 20160 

respectively. Apart from the first, which has only one- 
solution, these formulae possess multiple complex roots for 
p(L). Of these, any root which gives 1~1 > 1 or Re(y)>O 
represents a progressive growth in the numerically calcu- 
lated magnitude of the function y that is being modelled. It 
therefore indicates the presence of a numerical instability. 

Strong Instability. The solution of most interest there- 
fore, is the solution with the largest value of Re(y). 
Accordingly, maximum values of Re(y) are plotted in Fig. 9 



EFFICIENT SURFACE-INTEGRAL ALGORITHM 107 

as a function of the time-step parameter 1. This shows 
clearly that all orders of backward differencing produce a 
fairly large positive value of Re(y) at sufficiently large time- 
steps. This accounts for the appearance of the strong 
instability in the wave calculations above. In all cases, the 
root of the relevant equation in (7.5) that produces this 
instability becomes stable again as ;1 decreases below a 
strong instability threshold value of iTB, where 

,l,sz 1.732, 27=2, 2; z 1.818, 

2; z 1.590, i; z 1.366, 1; 
(7.6) 

= 1.156. 

Because “7, decreases as I, increases (excluding I, = 0), 
and because values of Re(y) increase with I, above this 
threshold, this also accounts for the fact that the strong 
instability tends to be felt sooner (that is, at smaller values 
of E) and to grow more rapidly for larger orders of backward 
differencing, as seen in Table V. 

Accuracy and Weak Instability. Except when 1, = 0, 
another root takes over in determining the maximum value 
of Re(y) as i continues to decrease. In all cases, the values 
of y(L) corresponding to this root decrease to zero as 1 tends 
to zero, indicating that the “numerical” time-stepping pro- 
cedure would indeed asymptotically reproduce the correct 
behaviour for y (as it should do) in the limit of very small 
time-steps. One finds that the magnitude of l?(L)1 increases 
in proportion to A3 +lg when 2 is very near zero, thus 
reflecting the order of accuracy of the basic time-stepping 
procedures. More specifically, near 1= 0, one actually finds 
that Re(y) increases in proportion to %3+2c’e’21 and that 
Im(y) increases in proportion to %4+2C’B’21, where [1,/2] 
represents the largest integer less than or equal to 1,/2. This 
tends to indicate that errors due to time-stepping arise 
predominantly in reproducing the phase of a wave for even 
orders of backward differencing, and in reproducing the 
amplitude for odd orders. 

However, the sign of Re(y) is not always found to be 
negative when E, is small. The inset in Fig. 9 shows how it 
becomes positive, in any neighbourhood of the origin, for 
both second and third orders of backward differencing. 
With I, = 2, Re(y) does become negative again, showing the 
existence of a window of stability that does not include the 
origin. With three orders of backward differencing, the real 
part of this root does not become negative before the more 
strongly unstable root takes over, indicating that a time- 
stepping procedure based on I, = 3 would be uniformly 
unstable for any positive time-step. In a wave surface 
involving many possible modes, there is typically a distribu- 
tion of frequencies o, with the longer wavelengths tending 
to have smaller values of o. Thus some modes, at least, will 
always tend to lie in the regions of weak instability. Most 
particularly, because the regions of instability include any 

small neighbourhood of the origin, an eventual numerical 
growth cannot be eliminated (although it can be delayed) 
by taking reduced time-steps. Moreover, for small enough 
time-steps, it is the highest frequency (or shortest) waves 
that would tend to grow most quickly. 

For other orders of backward differencing, a single 
window of stability that extends to the origin is predicted by 
the solutions of Eqs. (7.5) so that, at least with four and five 
orders of backward differencing, one would not expect to 
find an unstable numerical growth for small enough sizes of 
time-step. Once again, this finding is in accordance with the 
observations based on Table V, that an instability is 
observed much sooner for I, equal to two or three when E 
and ak are sufhciently small. 

Still considering the roots that account for weakly 
unstable behaviour, some of the real parts of y(J) change 
sign at specific values of 1. Denoting these values by A;, one 
finds 

A: M 1.732*, ny zz 0.952, 27 r-z 1.620, 

2: z 0.604*, AI” z l.OOl*. 
(7.7) 

Those values that are written with an asterisk represent 
points at which Re(y) increases as 2 increases through 1:. 
These values are most significant in the cases with I, = 4 or 
5, when they represent genuine instability thresholds above 
which a weak instability appears before the strong 
instability thresholds 17, are reached. Because 1: is greater 
than AT, it follows that calculations are stable to the weak 
form of instability over a wider range of 1 when performed 
using five rather than four orders of backward differencing. 

7.3.2. Application to Sawtooth and m-Point Instability 
Thresholds 

The actual evolution of infinitesimal disturbances on a 
moving wave surface is more difficult to predict. However 
the analysis above for a flat-surface does bear some 
generalisation. A local point separation Sr is easily identified 
with lRt;l and a local equivalent of gravity g is the normal 
pressure gradient P, at the surface-which is the normal 
component of VP = p(Du/Dt + gj). If changes in the overall 
wave motion are considered to take place relatively slowly, 
over many surface points, then one can expect the analysis 
above at least partly to apply, predicting weak or strong 
numerical instabilities that depend on the local surface 
properties. 

Considering a small disturbance mode to have a 
wavelength of m surface points, it is readily seen that this 
corresponds to a wavenumber of k, = 27r,Jlm R, 1. According 
to linear theory, this wave should have a frequency of 
(P,k,)“* (being the surface equivalent of A). However, 
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taking into account the numerical 
Fig. 6, one should find instead that 
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dispersion relation of 

:m=2 

:m=3 (7.8) 
- 

at least for the methods of estimating derivatives and 
the method of solving Laplace’s equation used in this 
implementation of the algorithm. For a given (say, 
threshold) value of 1, the time-step size 6t corresponding to 
this mode now becomes 

Given a wave motion involving changing values of P, 
and R,, this formula allows one to estimate the size of time 
step that would, for example, make a sawtooth mode 
(m = 2) become unstable at some point. For instance, with 
fifth order backward differencing, one would need to set 
A=AyZ 1 in equation (7.9) which would then provide a 
threshold size of time step below which all weak and strong 
instabilities would be absent. 

In order to check the results of the model stability 
analysis, some numerical tests were performed using only 
two or three very slightly disturbed grid points in a spatial 
period. The imposed periodicity then ensures that only 
a sawtooth mode (m = 2) or three-point periodic mode 
(m = 3), respectively, is able to developthese being the 
only possible modes for these numbers of points. By 
following the growth of disturbances using two orders of 
backward differencing and fixed sizes of time-step, a numeri- 
cal estimate was made of the values of the growth-rate 

FIG. 10. Numerically estimated and theoretical (shown dotted) 
growth-rates Re(y) when two orders of backward dilYerencing are used. 
These are plotted as functions of time-step for 2-point (sawtooth) and 
3-point modes of instability on a fluid surface. 

eigenvalue Re(y). The results of these calculations are 
presented in Fig. 10 as a function of the time step iit, with 
dotted curves representing growth-rates predicted from the 
model analysis. The agreement between the theoretical 
predictions and the numerical estimates is very good, 
especially considering that the numerical estimates of the 
decay rates (in particular) were difficult to obtain 
accurately. 

The information shown in the figure is scaled as if these 
sawtooth and 3-point periodic modes were developing on a 
flat surface represented by any number of spatial points 
in a periodic domain, with equation (7.9) providing the 
appropriate scalings between A and 6t for the model predic- 
tions. In this way, the diagram provides a direct indication 
of the levels of time-step at which the first two short- 
wavelength modes pass through stability boundaries when 
using two orders of backward differencing. 

7.4. Steep-Wave Instability 

As observed in connection with Table IV, the steep-wave 
instability seems to be associated with the curvature and 
normal pressure gradient at the crest of a wave. On the 
other hand, being related most directly to small perturba- 
tions on an otherwise flat surface, with no direct considera- 
tion of spatial variation and wave propagation, the model 
analysis above does not seem to be able to predict anything 
significant about the nature and growth of this type of 
instability, which still awaits an adequate explanation. 

One may only conjecture at this stage that it might be 
associated with the near zero group velocity found for a 
significant range of wave-modes near the sawtooth or 
two-point limit (from the numerical dispersion relation in 
Fig. 6) and some genuinely nonlinear interaction between 
such modes and properties associated with steep wave- 
crests. Given that a near sawtooth wave-mode has a group 
velocity that is practically zero, a localised disturbance on 
this scale in the surface tends to remain fixed with respect to 
surface particles and to be unable to disperse. For all practi- 
cal purposes it behaves like a localised standing-wave which 
should, in principle, radiate its energy at the group velocities 
of its component wave-modes. 

It seems a likely possibility that a nonlinear interaction 
with a wave-crest could amplify this disturbance slightly 
each time the crest passes through it (at about every par- 
ticle-period), leading to a buildup of energy in short wave- 
modes that remains more-or-less fixed to the Lagrangean 
numerical grid points. Indeed, being more sharply curved 
than any other part of a wave surface, a steep wave-crest 
contains more shorter wave components. The difficulty over 
numerically modelling the group velocities of these com- 
ponents may mean that they are simply stripped away from 
the crest as it passes repeatedly through the grid. 



7.5. Stabilising the Algorithm It is found that two of these instabilities are eliminated by 

To conclude the findings of this discussion on stability, 
making appropriate restrictions on the maximum size of 

the linear stability analysis backs up the numerical findings 
time-step and by using four or five, rather than two or three, 

that a strong instability is eliminated by restricting the max- 
orders of backward differencing to improve the accuracy of 

imum size of time-step. Equation (7.9) gives this time step 
time-stepping. These instabilities would be present using 

limit where J takes an appropriate value 2: given in (7.6). 
any technique (including Cauchy’s integral theorem) for 

The weak instability is eliminated by taking I, to equal 4 or 
solving Laplace’s equation. The third instability is conjec- 

5 and by restricting time-steps with 1. = nr in Eq. (7.9). 
tured to be related to inaccuracies in numerically simulating 

Should the remaining (steep-wave) instability prove a 
the group velocity of very short wave-modes, near the 

problem, it can be eliminated using very selective smoothing 
numerical limit of two points per wavelength-it is also very 

formulae discussed in Appendices B and C. 
dependent on the steepness of the waves in the wave-surface. 

It is worth noting that the linear stability analysis of Sec- 
Should it become necessary, it is convincingly demonstrated 

tion 7.3.1 depends only on the method for time-stepping and 
that this (and indeed the other two forms of numerical 

not on the method of solving Laplace’s equation. The latter 
instability) can be completely controlled by using very selec- 

affects only the calculated value of w  in this analysis. The 
tive, high order, smoothing formulae. In many practical cir- 

same findings (relating to the presence of “weak” and 
cumstances however, these instabilities are found to play no 

“strong” instabilities) would thus apply to any method 
significant role. 

which uses the same principle of calculating higher time 
This numerical scheme is found to be able to calculate 

derivatives and time-stepping using truncated Taylor series. 
many complicated surface simulations very accurately and 

The “steep-wave” instability may be a product of the 
very quickly indeed. As a result, only modest computing 

method for solving Laplace’s equation, and other 
resources need be required for the investigation of many 

techniques may introduce yet further instabilities. 
surface phenomena. Of course, with powerful computers, 
this means that it is also now possible to investigate 
increasingly ambitious problems. 

8. CONCLUSIONS 

Steep gravity-wave phenomena, and indeed fluid surface APPENDIX A: CALCULATION OF HIGHER 

and interface problems in general, present a rich range of TIME DERIVATIVES 

steady or unsteady behaviour that is often difficult to model 
analytically. In such cases, reliable numerical calculations In order to be able to solve equations (2.10) for the 
can provide both interesting and practically valuable infor- gradients of #,, d,,, etc., it is first of all necessary to know the 
mation that cannot be obtained in any other theoretical values of $1, +,, etc. on the surface. Rewriting Bernoulli’s 
way. equation (2.7) in Eulerian form gives 

The algorithm that has been presented in this paper offers 
and tests some useful means of enhancing the accuracy and 4, + u2/2 + P/p + gy = 0. 64.1) 
speed of existing methods for numerically simulating the 
movement of wave surfaces on two-dimensional fluids. This 
is mainly achieved by using direct calculation of a number 

Rearranging this and successively differentiating shows that 

of time-derivatives of the surface motion and finds a further 
contribution from using high-order methods for calculating dr= -tP/P+gY+u2/21 

spatial or arclength derivatives. Using the latter, the calcula- drr= -cp,IP+u~u,l 64.2) 
tions presented in this paper demonstrate that surprisingly 
few numerical “surface” points can lead to high degrees of 
computational accuracy. 

dt*r,= -CP,l/P+u.U,r+U,.U,l, 

Extensive tests of an implementation of the algorithm etc., which give the required surface values in terms of lower 
(using Cauchy’s integral theorem in order to solve itera- order Eulerian time-derivatives of P and u. 
tively the fluid boundary-value problem for up to three However, the pressure P is only open to definition on the 
time-derivatives) are reported in this paper. They reveal surface R(5, t) which is moving with time. Thus while the 
some signs of three identifiable forms of numerical Lagrangean derivatives DP/Dr, D2P/Dt2, etc., can be 
instability that have been closely examined both by using specified, the time-derivatives of P at fixed values of x and 
appropriate test-runs and by a model stability analysis. y (i.e. the Eulerian derivatives, P,, P,,, etc.) cannot, in 
These examinations show how a reliably stable numerical general, be specified directly. To get over this problem, a 
scheme is produced by adjusting the method to remove all conversion from Eulerian to Lagrangean derivatives has to 
signs of instability. be made as follows, 
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P,=~-“.vP=~+p”.[u,+v(“‘/2+g4.), so that if u = (U(<, t), V(<, t)) at the surface, 

=g+pu. 
Du [ 1 

u,= -vy=(UsX5- vcY,)/(x;+ Y;) 

z+gi u,=u,=(ugY(+ V,X,)/(X;+ rg,. 
(A.8) 

p,, =D2P --u.VP,+l.VP) 
(A.3) Exactly analogous expressions can be used to evaluate the 

Dt2 gradient of any of the derivatives of u, such as II!, II,, uy,, 

D2P 
=~+pu.ru,,+v(u.u,)l+p~ u [ -(gy + d)]? 

given only their values on the surface. In this way it is 
possible to evaluate all of the terms required for evaluating 
Eqs. (AS) and the transformations (A.6). For example: 

etc., where j is the vertical unit vector j = Vy. In these expres- 
sions, terms such as VP and VP, have been eliminated by 
using the relations, 

(u,.V)u= u,-&+v,z 
( ay > 

(u,v) 

= (u,u.x + VIVX~ u,vx- Ul%) 

u,= -V(P/p+gy+u2/2) and (A.9) 

u,, = -W,IP + u . u,), 
(A.4) 

(u.v)*u= u-+ ( ix u$)(“&+vf-) (u, VI 

etc., obtained by combining equations (2.10) and (A.2). 
It can thus be seen that the required surface values for #,, = cuf + vz,)(u, 0) + (u2 - U2N~,,, v,,) 

d,,, etc., are given by + 24u,,, -u,,). 

dr= -WP+gY+u2/2) With these equations (continued to still higher deriva- 

4rr= -{yP+u.(g+u,+gj)j 

tives if necessary) and some means of solving Laplace’s 
equation, it becomes possible successively to calculate up to 

d,,,= -{$qp+u.[~+2u,,+v(u.u,)] (A.5) 

any order of time-derivative of velocity. In order to set up 
Taylor series in time for the surface profile R and surface 
potential @, it only remains to extend Eqs. (2.6) and (2.7) 
by straightforward differentiation, so that 

R,(& I)=~=u, R,,(& l)=$=g,etc. (A.lO) 

etc., on r = R(& t), where P(R, t) is open to definition 
(thereby specifying DPJDt, D2P/Dt2, etc., in the process) 

and 

-for a constant surface pressure all of the derivatives, 
DPIDt, D2P/Dt2, etc., will simply be zero. 

@A(, r)=$f=u2/2-(P/p+gy) 

Before the surface values can be calculated in Eqs. (A.5), 
it is necessary to evaluate the appropriate Lagrangian D2@ 

derivatives of the velocity at the surface. These are also 
@,A57 f)=z- -u.$-(L!!/p+gv) (A.11) 

needed for time-stepping the surface position. The following 
relations hold between the Eulerian and Lagrangian etc., where 5 is held fixed in the differentiation of R and @ 

time-derivatives of u: with respect to t. 

Du 
-=u,+(u~v)u APPENDIX B: PROCEDURES FOR MANIPULATING 
Dt THE SURFACE DATA 

D2u 
(A.61 

s= u,, + 2(u. V) u, + (u, . V)u + (u . V)2 u, In order to make better use of the program in some cir- 
cumstances two additional features were introduced to 

etc. In order to use these relations, the various gradient 
modify the surface data in specific ways: 

terms must be evaluated. This can be done by noting that 
for u = (u, v), 

B.l. Smoothing 

As seen in Section 7.2, smoothing may be used occa- 
u, + 0, = 0 = u, - v, (A.7) sionally as one means of removing some signs of numerical 
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instability. Provided the surface is described by a sufficiently 
large number of points, it also may be thought of as a means 
of helping to maintain accuracy. This is achieved either 
because smoothing selectively removes modes with wave- 
lengths as short as two or three grid points (which are least 
accurately modelled according to the dispersion relation 
in Fig. 6) or because it helps to ensure a “smooth’ point 
distribution (which is necessary if point label derivatives are 
to be calculated accurately). 

Five and seven point formulae, designed to destroy 
“sawtooth” oscillations in surface data, were derived by 
Longuet-Higgins and Cokelet [2]. It was decided to extend 
this approach by also allowing for 7-,4 9-, ll-, 13-, and 
15point formulae as presented in Appendix C. The higher- 
order sawtooth smoothing formulae are found to be much 
more selective than lower-order formulae in destroying only 
data that represent a successively positive and negative dis- 
placement from otherwise “smooth” values As a result they 
cause disproportionately less damage to other modes each 
time they are used. Two formulae are also derived that are 
designed to destroy both sawtooth oscillations (having a 
periodicity of two points) and oscillations that are periodic 
over every three data points. 

Figure 1 la shows the result of using each one of these for- 
mulae to “smooth” sinusoidally varying data discretised 
using differing numbers of points per wavelength. With only 
two points, the wave is a pure zig-zag and is completely 
destroyed in all cases. With four points per wavelength, 
the ll-point sawtooth smoothing formula reduces the 
amplitude of the data by about 3% as compared with the 
25 % of the 5-point formula and 0.8 % of the 15-point for- 
mula. The formulae designed also to remove 3-point oscilla- 
tions completely destroy waves with three points per 
wavelength (as they should), and decreasingly alter waves 
with more points. In this, the formula based on 15 points is 
less severe than the formula based on 9 points. 

In fact, the higher-order sawtooth formulae are found to 
cause so little loss of accuracy that they can be used more 
frequently (even repeatedly) and so be more effective at 
destroying any nearly zig-zag or 3-point periodic com- 
ponent while still causing less overall damage to anything 
else. The effect of repeatedly using the 15-point sawtooth 
formula is shown in Fig. 11 b, in which it can be seen that 
many successive applications to sinusoidal data tend to 
selectively remove modes over a very limited range of 
wavelengths. 

Noting from Tables I and II that the total energy usually 
proves to be a sensitively affected property of a wave when 
N and E are varied, the effect of using various smoothing 
formulae on the total energy was tested using a wave of 
amplitude ak = 0.4. For differing numbers of points used to 

4The seven-point formula used here is different from that used by 
Longuet-Higgins and Cokelet. 

,I 7z7 

I i b 6 

FIG. 11. (a) Resulting wave amplitude after smoothing sinusoidal 
data with I points per wavelength using sawtooth (solid lines) and 
both sawtooth and 3-point periodic (dashed lines) smoothing for- 
mulae-Eqs. (C.11) and (C.13); (b) (lower diagram) Amplitudes of the 
same initial data after 1, 4, 16, 64 and 256 repeated applications of the 
15-point “sawtooth” formula. 

discretise the wave surface, the relative change in total 
energy resulting from a single use of each smoothing 
formula on all of the functions X, Y, and @ is shown in 
Table VI. 

The observable change in total energy becomes very small 
with the higher-order formulae when the wave is described 
by a moderately large number of points. When this is the 
case, repeated applications of the smoothing formulae make 
a diminishing difference to the wave so that the effect is not 
arithmetically cumulative and many smoothing passes tend 
to result in about the same order of magnitude of change as 
a single pass. Smaller amplitude waves are even less 
significantly affected. It can also be seen from Table VI 
that the 9- and 15-point sawtooth and 3-point periodic 
smoothing formulae have a more dramatic effect than their 
sawtooth counterparts. Because these formulae approach 
asymptotically the sawtooth formulae based on 5 and 9 
points, respectively (as in Fig. 1 la), their repeated applica- 
tion tends to behave in exactly the same way as these 
sawtooth formulae. 

B.2. Conservation of Energy and Mean-Surface Level 

The Taylor-series time stepping procedure does not 
explicitly conserve energy and the mean surface level, Any 
changes in these values per wave period are found to be 
small, provided E is small, and may be used as a measure 
of the overall accuracy of any results (as in Section 6). 
However, it is also possible to modify the time-stepping pro- 
cedure in order to ensure conservation of these quantities. 
This is desirable under some circumstances, particularly 
when calculations are made over many wave-periods. In 
such calculations, it would be convenient to use the same 
value of E as would be acceptable for calculating over a 
shorter time-scale. Unfortunately, the error in calculating 
the energy (in particular) tends to accumulate so that, 
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TABLE VI 

Percentage Change in Calculated Total Energy Resulting From a Single Use of a Sawtooth (2-Point Periodic) or Sawtooth and 
3-Point Periodic Smoothing Formula on a Wave of Height ak = 0.4 Described by Differing Numbers of Surface Points 

Number of points in sawtooth smoothing formula 2 and 3 point modes 
Number Calculated 

of points energy 5 7 9 11 13 15 9 15 

4 0.4373540 -43.9 -23.26 - 22.562 -11.483 -7.1024 -3.2125 -92.04 - 58.635 
5 0.4399875 -23.1 -8.401 -5.7877 - 2.0246 - 1.0354 - 0.34744 - 57.51 - 10.919 
6 0.4401338 - 12.4 -3.117 - 1.4759 - 0.29248 -0.01843 0.05582 -28.86 - 1.9660 
8 0.4400144 -4.36 -0.6194 -0.15581 - 0.00540 0.01432 0.01400 -7.043 - 0.00070 

10 0.4399863 - 1.86 -0.1679 -0.02300 0.00278 0.00450 0.00316 -2.059 0.01985 
12 0.4399809 -0.916 - 0.0569 - 0.00427 0.00125 0.00127 0.00075 -0.7205 0.00832 
15 0.4399795 -0.381 -0.0150 - 0.00045 0.00027 0.00020 0.00012 -0.1934 0.00178 
20 0.4399793 -0.122 -0.0027 -0.000017 0.000027 0.000010 0.000003 -0.0346 0.00016 

unless something is done to ensure its conservation, the 
basic properties of the calculated wave can change markedly 
over a very long time. Reducing E in order to compensate for 
this is a relatively inefficient (and ultimately unreliable) way 
of overcoming the problem. 

The conservation of mean surface level and energy can be 
ensured simply by making a small readjustment at each 
time-step to the calculated values of Y and @. Thus if P’ is 
the mean level after time-stepping, while the true mean 
level should be y, then the true level can be restored simply 
by subtracting 9’ - P from each value of Y on the surface. 
The kinetic and potential energies are obtained using the 
formulae, 

KE=~~~‘&Sndx and PE=yJ2n(Y- F)‘dx. 03.1) 
0 

If the calculated energy is E’= KE’+ PE’ while the true 
value should be E then the energy level can (very nearly) be 
restored by multiplying‘each value of Y - P and @ by 
m. It is clear that such changes always fall within the 
range of the errors that result both from truncating the 
Taylor series, used in the time-stepping approximation, and 
from numerically estimating the time derivatives of the 
surface motion. 

APPENDIX c: SOME HIGH-ORDER 
NUMERICAL FORMULAE 

C.l. Polynomial Fitting at Arbitrary Points; 
Backward Differencing 

Lagrange interpolation [22] can be used to evaluate the 
coefficients of a polynomial of order n,fttl,([), that is “fitted” 
exactly at a set of n + 1 values such that 

fdO)=fo, fda) =f,, f,,,,(b) =fb, f(,JC) =f,, (C.1) 

etc. For example, with only six points, such a polynomial 
can be written explicitly as 

fcs,-fo= i(i-b)(i-c)(i-d)ti-e) 

u(n-b)(a-c)(a-d)(a-e)(f”-fo) 

+ ... +iti-a)(S-b)(1-c)ti-df (f -f) 
e(e-a)(e-b)(e-c)(e-d) ’ ” 

(C.2) 

in which successive terms take corresponding forms with the 
letters u, . . . . e suitably transposed. Coefficients of different 
powers of [ are then easily obtained once the expansions of 
each of the terms containing (f, -fo), for c( E {a, . . . . e}, are 
known. For instance by expanding the term containing 
(f, - fo), one finds 

Ui - a)ti - b)(i - c)(i - 4 

- ubc - ubd - ucd - bed 

= (i, i’, 13, c4, 17 (C.3) 

-u-b-c-d 

in which successive coefficients, starting with the last, 
respectively consist of all possible zeroth order, linear, 
quadratic, cubic, etc., combinations of the elements of the 
set { --a, . . . . -d}. Corresponding contributions from any 
other fitted value f, are obtained by simply transposing 
letters. 

For backward differencing, it remains only to identify the 
parameters u, b, etc., as times (relative to the current time) 
at which appropriate derivative values f,, fb, etc., are 
known. 

C.2. Fitting to 11 Unit-Spaced Points 

This approach can also be applied to polynomial fits at 
evenly spaced points. Without loss of generality, the spacing 
between successive points can be considered to be exactly 
unity so that SC,,,(i) is fitted at integral values of i. 



It is clear from this that tenth-order (1 l-point) estimates 

i 

of the first and second derivatives off with respect to 5: at 
2100 -600 150 -25 2 any point are 

-70098 52428 -14607 2522 -205 
= 1938 -1872 783 -152 13 f’(5) =f;10#) = aI 

-378 408 -207 52 -5 and (C.8) 

and 

42 -48 27 -8 1 
f”(5) =f ;loj(0) = 2a2. 

These formulae will only provide accurate estimates of 

(C.5) the derivatives if the truncated expansion (C.4) can be 
considered to be accurate. This requires that any terms of 

5/ 

higher power in [ can realistically be neglected. If f is an 
order one function of a (perhaps spatial) variable z = hc, 
then this will only be true, in general, if the data points are 
“smoothly” distributed and if h is small. This being so, the 
error term in Eq. (C.7) can be estimated as 

x~(1-(2)(22-[2)-.(52-i2). (C.9) 

i 

- 73766 42000 -6000 1000 -125 8 

192654 -140196 52428 -9738 1261 -82 
Since f ‘(0 and f “(5) would be of order h and h2, respec- 

- tively, it follows that the relative errors in the formulae (C.8) 
= - 12276 9690 -4680 1305 -190 13 must be of the order of (5 !)’ h”/ll! in both cases. In a 

462 -378 204 -69 13 -1 similar way, analogous first and second derivative formulae 

- 252 210 -120 4.5 -10 1 
involving polynomials fitted to M = 2m + 1 points 

/ fo 
fi +f-l 

i i 

would involve relative errors of the order of (m!)’ I?‘-‘/ 
M!w2-“J;llmhM-‘= O((h/2)“-‘). If the derivatives 
d’tfldz” and d 12f/dz12 are indeed comparable in value to 

x f2+f-2 
unity (that is, not being closer in value to 2”) the factor of 

f3+f-3 . 
(C.6) 2’ ~ M in this error-estimate does indeed make a practical 

f4 +f-4 

difference since M is quite large. 

f5 +f-5 

A useful test of the accuracy of the formulae (C.8) 
is to compare calculated and exact values of derivatives 
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Supposing now that the functionf =f(r) is known only Clearly, analogous formulae exist for all other orders of 
at integer values of the parametric variable r, then a poly- polynomial fitting but this lOth-order polynomial s&ices 
nomial approximation of order n for f can be written as for the present discussion. The error in the polynomial 
follows: approximation (C.4) can be estimated asymptotically as 

f(4+i)~f~,,(i)=fo+a,i+a2i2+ ... +a,[“, (C.4) f(r+i)-ftn)(i) 

wheref, = f( 5). Withf, representing the value off( t + c) at 
[ = v, the values of the coefficients a,, a,, etc., in a tenth- 

, f c"'(5) + cP"'(S) i(l _ 12)(2* _ [2) 

(2[n/2] + l)! 
order centrally fitted polynomial, which is exactly correct at 
the eleven integer values - 5 d { < 5, are provided by the 
matrices 

.‘.(C4212-t2), (C.7) 

where fckl(t) represents the kth derivative of f(t) with 
respect to 5. 

C.3. Formulae for Differentiation; Accuracy 

581/103/l-9 
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FIG. 12. First (dashed line) and second (solid line) derivatives of 
sinusoidal and cosinusoidal data, respectively, calculated using 1 l-point 
formulae. 

of the sinusoidal functions (1/27c) sin(2nZj1) and - (l/2~)~ 
cos(2~r/Z). These are periodic over 1 points and have first 
and second derivatives of unity (respectively) with respect 
to 5 at t = 0. The results of applying the formulae (C.9) are 
shown in Fig. 12. The second derivative formula is in error 
by about 30 % for a wavelength of only 2 points and rapidly 
improves to about 2 i % at a wavelength of 3 points and $ % 
for 4 points. The first derivative formula has more difficulty 
with the shorter wavelengths, mainly because the sine wave 
of 2-point periodicity cannot be represented at integer 
values of t. The formula recovers quickly however, giving 
an error of about 12% for a wavelength of 3 points and 
14% for 4 points. 

This behaviour is largely responsible for the shape of the 
numerical dispersion relation shown in Fig. 6. It would 
clearly improve this calculation if higher-order derivative 
estimates, or spectral techniques, were to be used [S]. This 
clearly is a possible option and remains to be investigated 
further. The present implementation, however, is useful in 
pointing out both the value and the limitations of using 
high-order polynomial estimates. 

C.4. Smoothing Formulae 

C.4.1. Sawtooth Modes 

We now suppose that the data values at M= 2m + 1 
consecutive points, -m < c < m, consist of a polynomial of 
order M - 2 and a displacement 6, which is positive for 
even points and negative for odd points, representing a 
sawtooth disturbance. That is, 

f(5 + C-J xfwzdi) + 

6, : [even 
-6, : i odd. 

(C.10) 

Fitting this approximation to the points f,,, leads to the 
following solutions for 6 M 

226, 
246, 

266, 0 286, 
2’O6 
2126:: 
2’46,, 

I 2 -1 
6 -4 1 

20 -15 6 -1 
70 -56 28 -8 1 

252 -210 120 -45 10 -1 
924 -792 495 -220 66 -12 1 

,3432 -3003 2002 -1001 364 -91 14 -1 

x (C.11) 

for all values of M between 3 and 15. An M-point sawtooth 
smoothing of a function f would be achieved by subtracting 
the values of 6,,,,( 5) from the values off (5) at each value of 
4. It is worth noting that the formula for a,, is identical to 
the formula for the last term in the polynomial fitted to 11 
points-a,, in (C.6) above-apart from a constant factor. 
This is not a coincidence and an analogous relationship is 
found for each of the formulae for 6, for any odd positive 
integer value of M. 

This reveals another significant interpretation of the role 
of these formulae. Recalling that the coefficients in the poly- 
nomial approximation (C.4) should decrease towards negli- 
gible values if truncation of the series to a finite polynomial 
is to provide a good approximation, it is clear that the last 
terms in each of these polynomials should also be very 
small. Being a measure of the magnitude of these last terms, 
the smoothing formulae (C.11) should thus provide some 
measure of the accuracy of the polynomial approximation 
to any given set of points. 

Alternatively, applying a smoothing formula to the 
function f(<Fsubtracting the values of S,,,(t) for an 
appropriate value of M-may be thought of as an attempt 
to reduce the values of the final coefficients in the polyno- 
mial approximation in order to recover some semblance of 



accuracy after (say) some numerical instability or simply a 
lack of resolution has caused them to increase unacceptably. 

C.4.2. Sawtooth Modes and Modes with 3-Point Periodicity 

More severe smoothing of the data can be achieved by 
also removing modes that are periodic over more than two 
points. It was seen in Section 7.3 that disturbances periodic 
over three points may be expected to follow the two-point 
or sawtooth modes in becoming unstable. The formula 
(C.10) can be extended to include all three-point periodic 
modes with zero mean value as follows. 

+ 
{ 

26G’ : [ = 31 
4;’ :[=31+1 I 

+ 1 0 :[=31 
&qy:[=31f 1 I 

(C.12) 

in which I represents any integer. 
Matrices that are associated with solving for SE’, SE’, 

and sz), as well as the polynomial coefficients in terms of 
function values at evenly spaced points centrally located 
about [ = 0, are only non-singular for M = 3, 9, 15, etc. In 
two of these cases, solving for SE) and SE) gives 
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’ 910 1562484 
-553 -1132923 

14 28678 1 
121 247021 

-37 -288586 
136033 

- 32941 
3367 

(C.14) 

ACKNOWLEDGMENTS 

This work was supported by the Science and Engineering Research 
Council. The author is also grateful to Professor D. H. Peregrine and to 
Drs. M. Mizuguchi and M. Tanaka for their helpful advice during many 
useful and interesting discussions. 

REFERENCES 

1. I. A. Svendsen, “Mixed Boundary Value Problem for Laplace’s Equa- 
tion in Domain of Arbitrary Shape,” Coastal Engineering Laboratory 
Report, Technical University of Denmark, 1971 (unpublished). 

2. M. S. Longuet-Higgins and E. D. Cokelet, Proc. R. Sot. London A 350, 
1 (1976). 

3. T. Vinje and P. Brevig, Adv. Water Resow. 4, 77 (1981). 

4. G. R. Baker, D. I. Meiron, and S. A. Orszag, J. Fluid Mech. 123, 477 
(1982). 

’ 646f’ 
54 c!g3’ 

4096 6 ‘I;’ 
(1458 b’&’ 

5. A. J. Roberts, IMA J. Appl. Math. 31, 13 (1983). 

6. B. Fornberg, SIAM J. Sci. Stat. Comput. 1, 386 (1980). 

7. S. Grilli, J. Skourup and I. A. Svendsen, Eng. Anal. Boundary Elements 
6, 97 (1989). 

10 -11 10 -5 1 
10 -4 -4 4 -1 

= 660 -627 517 

- 341 166 -55 11 -1 264 -165 -22 121 -100 43 -10 1 1 

fo \ 
f1+f-l 
f2+f-2 

8. D. W. Moore, IMA J. Appl. Math. 31, 1 (1983). 

9. J. W. Dold and D. H. Peregrine, in Proceedings of 19th Intnl. Conf on 
Coastal Engineering, Houston 1984, p. 955. 

10. J. W. Dold and D. H. Peregrine, in Numerical Methods for Fluid 
Dynnmics II, edited by K. W. Morton and M. J. Baines (Clarendon 
Press, Oxford, 1985). 

11. M. Tanaka, J. W. Dold, M. Lewy, and D. H. Peregrine, J. Fluid Mech. 
185, 235 (1987). 

12. J. W. Dold and D. H. Peregrine, in Proceedings of 20th Intnl. Conf: on 
Coastal Engineering, Taipei 1986, Vol. 1, p. 163. 

13. M. J. Cooker, Ph. D. Thesis, University of Bristol, 1989 (unpublished). 

14. M. J. Cooker, D. H. Peregrine, C. Vidal, and J. W. Dold, J. Fluid Mech. 
215, 1 (1990). 

15. A. F. Teles da Silva, Ph. D. Thesis, University of Bristol, 1989 
(unpublished). 

X 
f3 +f-3 

f4 +f-4 

(C.13) 

fs +f-5 

f6 +f-6 

, f7 +f-7 

16. P. McIver and D. H. Peregrine, “Motion of a Free Surface and Its 
Representation by Singularities,” Bristol University Report, 1981 
(unpublished). 

Smoothing is achieved by subtracting SE)(<) and 26:)(r) 
from f (5) at each value of r. In the cases M = 9 and M = 15 
this is equivalent to subtracting s,(t) = 8%) + 265’, where 

17. J. Rohklin, Comput. Phys. 60, 187 (1985). 

18. J. Reichel, J. Sci. Stat. Comput. 11, 263 (1990). 

19. M. Tanaka, J. Phys. Sot. Jpn. 52, 3047 (1983). 

20. M. S. Longuet-Higgins, Proc. R. Sot. London A 360,471 (1978). 

21. A. F. Teles da Silva and D. H. Peregrine, J. Fluid Mech. 195, 218 

22. R. L. Burden and J. D. Faires, Numerical Analysis (PWS-KENT, 

(1988). 

Boston, 1989), p. 91. 


